Structuring a conceptual model for cost-effectiveness analysis of frailty interventions
Autoři:
Hossein Haji Ali Afzali aff001; Jonathan Karnon aff001; Olga Theou aff002; Justin Beilby aff003; Matteo Cesari aff004; Renuka Visvanathan aff005
Působiště autorů:
College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
aff001; Department of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
aff002; Torrens University, Adelaide, South Australia, Australia
aff003; Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
aff004; Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
aff005
Vyšlo v časopise:
PLoS ONE 14(9)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0222049
Souhrn
Background
Frailty is a major health issue which impacts the life of older people, posing a significant challenge to the health system. One of the key emerging areas is the development of frailty interventions to halt or reverse the progression of the condition. In many countries, economic evidence is required to inform public funding decisions for such interventions, and cost-effectiveness models are needed to estimate long-term costs and effects. Such models should capture current clinical understanding of frailty, its progression and its health consequences. The objective of this paper is to present a conceptual model of frailty that can be used to inform the development of a cost-effectiveness model to evaluate frailty interventions.
Methods
After critical analysis of the clinical and economic literature, a Delphi study consisting of experts from the disciplines of clinical medicine and epidemiology was undertaken to inform the key components of the conceptual model. We also identified relevant databases that can be used to populate and validate the model.
Results
A list of significant health states/events for which frailty is a strong independent risk factor was identified (e.g., hip fracture, hospital admission, delirium, death). We also identified a list of important patient attributes that may influence disease progression (e.g., age, gender, previous hospital admissions, depression). A number of large-scale relevant databases were also identified to populate and validate the cost-effectiveness model. Face validity of model structure was confirmed by experts.
Discussion and conclusions
The proposed conceptual model is being used as a basis for developing a new cost-effectiveness model to estimate lifetime costs and outcomes associated with a range of frailty interventions. Using an appropriate model structure, which more accurately reflects the natural history of frailty, will improve model transparency and accuracy. This will ultimately lead to better informed public funding decisions around interventions to manage frailty.
Klíčová slova:
Social sciences – Economics – Economic analysis – Cost-effectiveness analysis – Medicine and health sciences – Health care – Health economics – Health care facilities – Hospitals – Geriatrics – Frailty – Pulmonology – Chronic obstructive pulmonary disease – Pelvis – Hip – Aging – Biology and life sciences – Anatomy – Musculoskeletal system – Developmental biology – Organism development – Physiology – Physiological processes – Engineering and technology – Structural engineering – Built structures
Zdroje
1. Bergman H, Ferrucci L, Guralnik J, Hogan DB, Hummel S, Karunananthan S, et al. Frailty: an emerging research and clinical paradigm—issues and controversies. J Gerontol A Biol Sci Med Sci. 2007;62(7):731–7. Epub 2007/07/20. doi: 10.1093/gerona/62.7.731 17634320; PubMed Central PMCID: PMC2645660.
2. Clegg A, Young J, Iliffe S, Rikkert MO, Rockwood K. Frailty in elderly people. Lancet. 2013;381(9868):752–62. Epub 2013/02/12. doi: 10.1016/S0140-6736(12)62167-9 23395245; PubMed Central PMCID: PMC4098658.
3. Fried LP, Tangen CM, Walston J, Newman AB, Hirsch C, Gottdiener J, et al. Frailty in older adults: evidence for a phenotype. J Gerontol A Biol Sci Med Sci. 2001;56(3):M146–56. Epub 2001/03/17. doi: 10.1093/gerona/56.3.m146 11253156.
4. Sirven N, Rapp T. The cost of frailty in France. Eur J Health Econ. 2017;18(2):243–53. Epub 2016/02/26. doi: 10.1007/s10198-016-0772-7 26914932.
5. Milte CM, Walker R, Luszcz MA, Lancsar E, Kaambwa B, Ratcliffe J. How important is health status in defining quality of life for older people? An exploratory study of the views of older South Australians. Appl Health Econ Health Policy. 2014;12(1):73–84. Epub 2013/11/21. doi: 10.1007/s40258-013-0068-3 24254996.
6. Collard RM, Boter H, Schoevers RA, Oude Voshaar RC. Prevalence of frailty in community-dwelling older persons: a systematic review. J Am Geriatr Soc. 2012;60(8):1487–92. Epub 2012/08/14. doi: 10.1111/j.1532-5415.2012.04054.x 22881367.
7. Sternberg SA, Wershof Schwartz A, Karunananthan S, Bergman H, Mark Clarfield A. The identification of frailty: a systematic literature review. J Am Geriatr Soc. 2011;59(11):2129–38. Epub 2011/11/19. doi: 10.1111/j.1532-5415.2011.03597.x 22091630.
8. Searle SD, Mitnitski A, Gahbauer EA, Gill TM, Rockwood K. A standard procedure for creating a frailty index. BMC Geriatr. 2008;8:24. Epub 2008/10/02. doi: 10.1186/1471-2318-8-24 18826625; PubMed Central PMCID: PMC2573877.
9. Thompson MQ, Theou O, Adams RJ, Tucker GR, Visvanathan R. Frailty state transitions and associated factors in South Australian older adults. Geriatr Gerontol Int. 2018;18(11):1549–55. Epub 2018/09/18. doi: 10.1111/ggi.13522 30221449.
10. Taylor D, Barrie H, Lange J, Thompson MQ, Theou O, Visvanathan R. Geospatial modelling of the prevalence and changing distribution of frailty in Australia—2011 to 2027. Exp Gerontol. 2019;123:57–65. Epub 2019/05/28. doi: 10.1016/j.exger.2019.05.010 31129145.
11. Puts MTE, Toubasi S, Andrew MK, Ashe MC, Ploeg J, Atkinson E, et al. Interventions to prevent or reduce the level of frailty in community-dwelling older adults: a scoping review of the literature and international policies. Age Ageing. 2017;46(3):383–92. Epub 2017/01/09. doi: 10.1093/ageing/afw247 28064173; PubMed Central PMCID: PMC5405756.
12. Fairhall N, Sherrington C, Kurrle SE, Lord SR, Lockwood K, Howard K, et al. Economic evaluation of a multifactorial, interdisciplinary intervention versus usual care to reduce frailty in frail older people. J Am Med Dir Assoc. 2015;16(1):41–8. Epub 2014/09/23. doi: 10.1016/j.jamda.2014.07.006 25239014.
13. Suijker JJ, MacNeil-Vroomen JL, van Rijn M, Buurman BM, de Rooij SE, Moll van Charante EP, et al. Cost-effectiveness of nurse-led multifactorial care to prevent or postpone new disabilities in community-living older people: Results of a cluster randomized trial. PLoS One. 2017;12(4):e0175272. Epub 2017/04/18. doi: 10.1371/journal.pone.0175272 28414806; PubMed Central PMCID: PMC5393862.
14. Sandberg M, Jakobsson U, Midlov P, Kristensson J. Cost-utility analysis of case management for frail older people: effects of a randomised controlled trial. Health Econ Rev. 2015;5(1):51. Epub 2015/06/10. doi: 10.1186/s13561-015-0051-9 26054487; PubMed Central PMCID: PMC4449349.
15. Karnon J, Afzali HHA, Putro G, Thant PW, Dompok A, Cox I, et al. A Cost-Effectiveness Model for Frail Older Persons: Development and Application to a Physiotherapy-Based Intervention. Appl Health Econ Health Policy. 2017;15(5):635–45. Epub 2017/03/30. doi: 10.1007/s40258-017-0324-z 28349499.
16. Ramos GF, Kuiper S, Dompeling E, van Asselt AD, de Grauw WJ, Knottnerus JA, et al. Structuring and validating a cost-effectiveness model of primary asthma prevention amongst children. BMC Med Res Methodol. 2011;11:150. Epub 2011/11/11. doi: 10.1186/1471-2288-11-150 22070532; PubMed Central PMCID: PMC3226537.
17. Bojke L, Claxton K, Sculpher M, Palmer S. Characterizing structural uncertainty in decision analytic models: a review and application of methods. Value Health. 2009;12(5):739–49. Epub 2009/06/11. doi: 10.1111/j.1524-4733.2008.00502.x 19508655.
18. Brisson M, Edmunds WJ. Impact of model, methodological, and parameter uncertainty in the economic analysis of vaccination programs. Med Decis Making. 2006;26(5):434–46. Epub 2006/09/26. doi: 10.1177/0272989X06290485 16997923.
19. Frederix GW, van Hasselt JG, Schellens JH, Hovels AM, Raaijmakers JA, Huitema AD, et al. The impact of structural uncertainty on cost-effectiveness models for adjuvant endocrine breast cancer treatments: the need for disease-specific model standardization and improved guidance. Pharmacoeconomics. 2014;32(1):47–61. Epub 2013/11/23. doi: 10.1007/s40273-013-0106-x 24263964.
20. Jackson CH, Bojke L, Thompson SG, Claxton K, Sharples LD. A framework for addressing structural uncertainty in decision models. Med Decis Making. 2011;31(4):662–74. Epub 2011/05/24. doi: 10.1177/0272989X11406986 21602487.
21. Haji Ali Afzali H, Bojke L, Karnon J. Model Structuring for Economic Evaluations of New Health Technologies. Pharmacoeconomics. 2018;36(11):1309–19. Epub 2018/07/22. doi: 10.1007/s40273-018-0693-7 30030816.
22. Le QA. Structural Uncertainty of Markov Models for Advanced Breast Cancer: A Simulation Study of Lapatinib. Med Decis Making. 2016;36(5):629–40. Epub 2016/01/13. doi: 10.1177/0272989X15622643 26753626.
23. Squires H, Chilcott J, Akehurst R, Burr J, Kelly MP. A systematic literature review of the key challenges for developing the structure of public health economic models. Int J Public Health. 2016;61(3):289–98. Epub 2016/01/10. doi: 10.1007/s00038-015-0775-7 26747470; PubMed Central PMCID: PMC4879162.
24. Roberts M, Russell LB, Paltiel AD, Chambers M, McEwan P, Krahn M, et al. Conceptualizing a model: a report of the ISPOR-SMDM Modeling Good Research Practices Task Force-2. Med Decis Making. 2012;32(5):678–89. Epub 2012/09/20. doi: 10.1177/0272989X12454941 22990083.
25. Tappenden P. Conceptual modelling for health economic model development. [Accessed 10 May 2018.]. Available from: http://eprints.whiterose.ac.uk/74464/1/HEDSDP1205.pdf.
26. Tabberer M, Gonzalez-McQuire S, Muellerova H, Briggs AH, Rutten-van Molken MPMH, Chambers M, et al. Development of a Conceptual Model of Disease Progression for Use in Economic Modeling of Chronic Obstructive Pulmonary Disease. Medical Decision Making. 2017;37(4):440–52. doi: 10.1177/0272989X16662009 WOS:000403059700013. 27486218
27. Kaltenthaler E TP, Paisley S, et al. Identifying and reviewing evidence to inform the conceptualisation and population of cost-effectiveness models.: NICE DSU Technical Support Document 13; [cited 2018 10 May]. Available from: https://www.ncbi.nlm.nih.gov/pubmedhealth/PMH0092948/.
28. Husbands S, Jowett S, Barton P, Coast J. How Qualitative Methods Can be Used to Inform Model Development. Pharmacoeconomics. 2017;35(6):607–12. Epub 2017/03/23. doi: 10.1007/s40273-017-0499-z 28321640.
29. Afzali HH, Karnon J, Merlin T. Improving the accuracy and comparability of model-based economic evaluations of health technologies for reimbursement decisions: a methodological framework for the development of reference models. Med Decis Making. 2013;33(3):325–32. Epub 2012/09/11. doi: 10.1177/0272989X12458160 22961101.
30. Sullivan W, Payne K. The appropriate elicitation of expert opinion in economic models: making expert data fit for purpose. Pharmacoeconomics. 2011;29(6):455–9. Epub 2011/05/17. doi: 10.2165/11589220-000000000-00000 21568356.
31. Iglesias CP, Thompson A, Rogowski WH, Payne K. Reporting Guidelines for the Use of Expert Judgement in Model-Based Economic Evaluations. Pharmacoeconomics. 2016;34(11):1161–72. doi: 10.1007/s40273-016-0425-9 WOS:000386755700008. 27364887
32. Earp JA, Ennett ST. Conceptual Models for Health-Education Research and Practice. Health Educ Res. 1991;6(2):163–71. doi: 10.1093/her/6.2.163 WOS:A1991GT64600004. 10148689
33. Okoli C, Pawlowski SD. The Delphi method as a research tool: an example, design considerations and applications. Inform Manage-Amster. 2004;42(1):15–29. doi: 10.1016/j.im.2003.11.002 WOS:000224489700002.
34. van der Steen JT, Radbruch L, Hertogh CM, de Boer ME, Hughes JC, Larkin P, et al. White paper defining optimal palliative care in older people with dementia: a Delphi study and recommendations from the European Association for Palliative Care. Palliat Med. 2014;28(3):197–209. Epub 2013/07/06. doi: 10.1177/0269216313493685 23828874.
35. Junger S, Payne S, Brearley S, Ploenes V, Radbruch L. Consensus building in palliative care: a Europe-wide delphi study on common understandings and conceptual differences. J Pain Symptom Manage. 2012;44(2):192–205. Epub 2012/06/19. doi: 10.1016/j.jpainsymman.2011.09.009 22704058.
36. Drummond MF SM, Claxton K, et al. Methods for the economic evaluation of health care programmes. 4th Edition Oxford: Oxford University Press; 2015.
37. Barton P, Bryan S, Robinson S. Modelling in the economic evaluation of health care: selecting the appropriate approach. J Health Serv Res Policy. 2004;9(2):110–8. Epub 2004/04/22. doi: 10.1258/135581904322987535 15099459.
38. Hao Q, Zhou L, Dong B, Yang M, Dong B, Weil Y. The role of frailty in predicting mortality and readmission in older adults in acute care wards: a prospective study. Sci Rep. 2019;9(1):1207. Epub 2019/02/06. doi: 10.1038/s41598-018-38072-7 30718784; PubMed Central PMCID: PMC6362215.
39. Hubbard RE, Peel NM, Samanta M, Gray LC, Mitnitski A, Rockwood K. Frailty status at admission to hospital predicts multiple adverse outcomes. Age Ageing. 2017;46(5):801–6. doi: 10.1093/ageing/afx081 WOS:000408341000018. 28531254
40. Apostolo J, Cooke R, Bobrowicz-Campos E, Santana S, Marcucci M, Cano A, et al. Effectiveness of interventions to prevent pre-frailty and frailty progression in older adults: a systematic review. JBI Database System Rev Implement Rep. 2018;16(1):140–232. Epub 2018/01/13. doi: 10.11124/JBISRIR-2017-003382 29324562; PubMed Central PMCID: PMC5771690.
41. Kahlon S, Majumdar SR, Pedersen J, Belga S, Lau D, Fradette M, et al. Association between Frailty and 30-Day Outcomes after Discharge from General Internal Medicine Wards: A Multi-Site Prospective Cohort Study. J Gen Intern Med. 2015;30:S103–S4. WOS:000358386900136.
42. Cadore EL, Casas-Herrero A, Zambom-Ferraresi F, Idoate F, Millor N, Gomez M, et al. Multicomponent exercises including muscle power training enhance muscle mass, power output, and functional outcomes in institutionalized frail nonagenarians. Age. 2014;36(2):773–85. doi: 10.1007/s11357-013-9586-z WOS:000333048600021. 24030238
43. Haji Ali Afzali H, Gray J, Karnon J. Model performance evaluation (validation and calibration) in model-based studies of therapeutic interventions for cardiovascular diseases: a review and suggested reporting framework. Appl Health Econ Health Policy. 2013;11(2):85–93. Epub 2013/03/05. doi: 10.1007/s40258-013-0012-6 23456647.
44. The Survey of Health Ageing and Retirement in Europe. [cited Accessed 20 Apr 2018]. Available from: http://www.share-project.org/home0.html.
45. Anstey KJ, Byles JE, Luszcz MA, Mitchell P, Steel D, Booth H, et al. Cohort profile: The Dynamic Analyses to Optimize Ageing (DYNOPTA) project. Int J Epidemiol. 2010;39(1):44–51. Epub 2009/01/20. doi: 10.1093/ije/dyn276 19151373; PubMed Central PMCID: PMC2817088.
46. Older South Australian (ROSA) database. [cited Accessed 20 Apr 2018.]. Available from: http://academichealthsciencesa.org.au/.
47. Gwyther H, Bobrowicz-Campos E, Apostolo JLA, Marcucci M, Cano A, Holland C. A realist review to understand the efficacy and outcomes of interventions designed to minimise, reverse or prevent the progression of frailty. Health Psychol Rev. 2018;12(4):382–404. doi: 10.1080/17437199.2018.1488601 WOS:000450280300003. 29916302
48. Favela J, Castro LA, Franco-Marina F, Sanchez-Garcia S, Juarez-Cedillo T, Bermudez CE, et al. Nurse home visits with or without alert buttons versus usual care in the frail elderly: a randomized controlled trial. Clinical Interventions in Aging. 2013;8:85–95. doi: 10.2147/CIA.S38618 WOS:000313865900001. 23378751
49. Eddy DM, Hollingworth W, Caro JJ, Tsevat J, McDonald KM, Wong JB, et al. Model transparency and validation: a report of the ISPOR-SMDM Modeling Good Research Practices Task Force—7. Value Health. 2012;15(6):843–50. Epub 2012/09/25. doi: 10.1016/j.jval.2012.04.012 22999134.
Článek vyšel v časopise
PLOS One
2019 Číslo 9
- Tisícileté topoly, mokří psi, stárnoucí kočky a ospalé octomilky – „jednohubky“ z výzkumu 2024/41
- Jaké jsou aktuální trendy v léčbě karcinomu slinivky?
- Může hubnutí souviset s vyšším rizikem nádorových onemocnění?
- Menstruační krev má značný diagnostický potenciál, mimo jiné u diabetu
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
Nejčtenější v tomto čísle
- Graviola (Annona muricata) attenuates behavioural alterations and testicular oxidative stress induced by streptozotocin in diabetic rats
- CH(II), a cerebroprotein hydrolysate, exhibits potential neuro-protective effect on Alzheimer’s disease
- Comparison between Aptima Assays (Hologic) and the Allplex STI Essential Assay (Seegene) for the diagnosis of Sexually transmitted infections
- Assessment of glucose-6-phosphate dehydrogenase activity using CareStart G6PD rapid diagnostic test and associated genetic variants in Plasmodium vivax malaria endemic setting in Mauritania
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy