Heart rate variability reduction is related to a high amount of visceral adiposity in healthy young women
Autoři:
Antonio Ivano Triggiani aff001; Anna Valenzano aff001; Valentina Trimigno aff001; Antonella Di Palma aff001; Fiorenzo Moscatelli aff001; Giuseppe Cibelli aff001; Giovanni Messina aff001
Působiště autorů:
Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
aff001
Vyšlo v časopise:
PLoS ONE 14(9)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0223058
Souhrn
Several heart rate variability (HRV) studies show abnormalities in autonomic nervous control in obese and overweight subjects. However, some of the results appear to be controversial. Here we investigate the HRV profile in seventy adult normotensive women and its association with general and visceral adiposity. Specifically, we recorded the electrocardiographic (ECG) activity in subjects during a supine resting state for five minutes in a quiet room late in the morning. Total fat mass (TFM) and visceral adipose tissue (VAT) were instead estimated using dual-energy X-ray absorptiometry (DXA). Finally, we used simple a linear regression analysis of frequency and time-domain parameters to study the relationship between HRV and adiposity. Our data showed an overall reduction of the HRV related to an increase of TFM although this regression appeared significant only for high frequencies (HF). When the linear regression was applied between HRV variables and VAT, the slope of the line increases, thus unveiling a statistically significant relation (i.e. the more VAT, the lower HRV). Finally, a control analysis showed that age does not alter the relation between HRV and VAT when used as a confounding factor in multiple regression. To conclude, these findings point to abnormal activity of the autonomic nervous system (ANS) in subjects with an excess of VAT and represent a starting point to determine a non-invasive index of cardiac wellness for clinical and nutritional application.
Klíčová slova:
Adipose tissue – Anthropometry – Electrocardiography – Fats – Heart rate – Hypertension – Absorptiometry
Zdroje
1. Millis RM, Austin RE, Hatcher MD, Bond V, Faruque MU, Goring KL, et al. Association of body fat percentage and heart rate variability measures of sympathovagal balance. Life Sci.; 2010;86: 153–7. doi: 10.1016/j.lfs.2009.11.018 19958777
2. Davy KP, Orr JS. Sympathetic nervous system behavior in human obesity. Neurosci Biobehav Rev. 2009;33: 116–24. doi: 10.1016/j.neubiorev.2008.05.024 18602694
3. Triggiani AI, Valenzano A, Ciliberti MAP, Moscatelli F, Villani S, Monda M, et al. Heart rate variability is reduced in underweight and overweight healthy adult women. Clin Physiol Funct Imaging. 2017;37: 162–167. doi: 10.1111/cpf.12281 26211739
4. Grassi G, Seravalle G, Cattaneo BM, Bolla GB, Lanfranchi A, Colombo M, et al. Sympathetic activation in obese normotensive subjects. Hypertension. 1995;25: 560–563. Available: http://www.ncbi.nlm.nih.gov/pubmed/7721398 doi: 10.1161/01.hyp.25.4.560 7721398
5. Laborde S, Mosley E, Thayer JF. Heart Rate Variability and Cardiac Vagal Tone in Psychophysiological Research–Recommendations for Experiment Planning, Data Analysis, and Data Reporting. Front Psychol. 2017;08: 1–18. doi: 10.3389/fpsyg.2017.00213 28265249
6. Shaffer F, Ginsberg JP. An Overview of Heart Rate Variability Metrics and Norms. Front Public Heal. 2017;5: 1–17. doi: 10.3389/fpubh.2017.00258 29034226
7. NASPE TFOEA. Heart Rate Variability: Standards of Measurement, Physiological Interpretation, and Clinical Use. Circulation. 1996. pp. 1043–1065. 8598068
8. Goldstein DS, Bentho O, Park M-Y, Sharabi Y. Low-frequency power of heart rate variability is not a measure of cardiac sympathetic tone but may be a measure of modulation of cardiac autonomic outflows by baroreflexes. Exp Physiol. 2011;96: 1255–61. doi: 10.1113/expphysiol.2010.056259 21890520
9. Thayer JF, Yamamoto SS, Brosschot JF. The relationship of autonomic imbalance, heart rate variability and cardiovascular disease risk factors. Int J Cardiol; 2010;141: 122–31. doi: 10.1016/j.ijcard.2009.09.543 19910061
10. Karason K, Mølgaard H, Wikstrand J, Sjöström L. Heart rate variability in obesity and the effect of weight loss. Am J Cardiol. 1999;83: 1242–7. Available: http://www.ncbi.nlm.nih.gov/pubmed/10215292 doi: 10.1016/s0002-9149(99)00066-1 10215292
11. Sekine M, Izumi I, Yamagami T, Kagamimori S. Obesity and cardiac autonomic nerve activity in healthy children: Results of the toyama birth cohort study. Environ Health Prev Med. 2001;6: 149–53. doi: 10.1007/BF02897962 21432253
12. Freeman R, Weiss ST, Roberts M, Zbikowski SM, Sparrow D. The relationship between heart rate variability and measures of body habitus. Clin Auton Res. 1995;5: 261–6. Available: http://www.ncbi.nlm.nih.gov/pubmed/8563458 8563458
13. Skrapari I, Tentolouris N, Perrea D, Bakoyiannis C, Papazafiropoulou A, Katsilambros N. Baroreflex sensitivity in obesity: relationship with cardiac autonomic nervous system activity. Obesity (Silver Spring). 2007;15: 1685–93. doi: 10.1038/oby.2007.201 17636086
14. Berthoud H-R. The vagus nerve, food intake and obesity. Regul Pept. 2008;149: 15–25. doi: 10.1016/j.regpep.2007.08.024 18482776
15. Laederach-Hofmann K, Mussgay L, Rúddel H. Autonomic cardiovascular regulation in obesity. J Endocrinol. 2000;164: 59–66. Available: http://www.ncbi.nlm.nih.gov/pubmed/10607938 doi: 10.1677/joe.0.1640059 10607938
16. Poliakova N, Després J-PP, Bergeron J, Alméras N, Tremblay A, Poirier P. Influence of obesity indices, metabolic parameters and age on cardiac autonomic function in abdominally obese men. Metabolism; 2012;61: 1270–9. doi: 10.1016/j.metabol.2012.02.006 22444779
17. Chen GY, Hsiao TJ, Lo HM, Kuo CD. Abdominal obesity is associated with autonomic nervous derangement in healthy Asian obese subjects. Clin Nutr. 2008;27: 212–217. doi: 10.1016/j.clnu.2007.11.004 18234399
18. Hillebrand S, De Mutsert R, Christen T, Maan AC, Jukema JW, Lamb HJ, et al. Body fat, especially visceral fat, is associated with electrocardiographic measures of sympathetic activation. Obesity. 2014;22: 1553–1559. doi: 10.1002/oby.20709 24458875
19. Yasuma F, Hayano J-I. Respiratory sinus arrhythmia: why does the heartbeat synchronize with respiratory rhythm? Chest. 2004;125: 683–90. doi: 10.1378/chest.125.2.683 14769752
20. Felber Dietrich D, Ackermann-Liebrich U, Schindler C, Barthélémy J-C, Brändli O, Gold DR, et al. Effect of physical activity on heart rate variability in normal weight, overweight and obese subjects: results from the SAPALDIA study. Eur J Appl Physiol. 2008;104: 557–565. doi: 10.1007/s00421-008-0800-0 18597107
21. Dordevic AL, Bonham M, Ghasem-Zadeh A, Evans A, Barber E, Day K, et al. Reliability of compartmental body composition measures in weight-stable adults using ge iDXA: Implications for research and practice. Nutrients. 2018;10. doi: 10.3390/nu10101484 30321991
22. Meredith-Jones K, Haszard J, Stanger N, Taylor R. Precision of DXA-Derived Visceral Fat Measurements in a Large Sample of Adults of Varying Body Size. Obesity. 2018;26: 505–512. doi: 10.1002/oby.22108 29286209
23. Kang SM, Yoon JW, Ahn HY, Kim SY, Lee KH, Shin H, et al. Android Fat Depot Is More Closely Associated with Metabolic Syndrome than Abdominal Visceral Fat in Elderly People. Fadini GP, editor. One PLoS. 2011;6: e27694. doi: 10.1371/journal.pone.0027694 22096613
24. Ginty F, Davis C, Rothney MP, Xia Y, Beaumont M, Rezzi S, et al. Precision of GE Lunar iDXA for the Measurement of Total and Regional Body Composition in Nonobese Adults. J Clin Densitom.; 2012;15: 399–404. doi: 10.1016/j.jocd.2012.02.009 22542222
25. Miazgowski T, Krzyżanowska-Świniarska B, Dziwura-Ogonowska J, Widecka K. The associations between cardiometabolic risk factors and visceral fat measured by a new dual-energy X-ray absorptiometry-derived method in lean healthy Caucasian women. Endocrine. 2014;47: 500–505. doi: 10.1007/s12020-014-0180-7 24504765
26. Tarvainen MP, Niskanen J-P, Lipponen J a, Ranta-Aho PO, Karjalainen P a. Kubios HRV—heart rate variability analysis software. Comput Methods Programs Biomed. 2014;113: 210–20. doi: 10.1016/j.cmpb.2013.07.024 24054542
27. Heart rate variability: standards of measurement, physiological interpretation and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Circulation. 1996;93: 1043–65. Available: http://www.ncbi.nlm.nih.gov/pubmed/8737210 8598068
28. Triggiani AI, Valenzano A, Del Percio C, Marzano N, Soricelli A, Petito A, et al. Resting state Rolandic mu rhythms are related to activity of sympathetic component of autonomic nervous system in healthy humans. Int J Psychophysiol.; 2015; doi: 10.1016/j.ijpsycho.2015.02.009 25660308
29. Aytemir K, Aksöyek S, Büyükasik Y, Haznedaroğlu I, Atalar E, Ozer N, et al. Assessment of autonomic nervous system functions in patients with vitamin B12 deficiency by power spectral analysis of heart rate variability. Pacing Clin Electrophysiol. 2000;23: 975–8. Available: http://www.ncbi.nlm.nih.gov/pubmed/10879381 doi: 10.1111/j.1540-8159.2000.tb00883.x 10879381
30. Stein PK, Kleiger RE, Rottman JN. Differing effects of age on heart rate variability in men and women. Am J Cardiol. 1997;80: 302–5. Available: http://www.ncbi.nlm.nih.gov/pubmed/9264423 doi: 10.1016/s0002-9149(97)00350-0 9264423
31. Acharya U R, Kannathal N, Sing OW, Ping LY, Chua T. Heart rate analysis in normal subjects of various age groups. Biomed Eng Online. 2004;3: 24. doi: 10.1186/1475-925X-3-24 15260880
32. Kim J a Park Y-G, Cho K-H Hong M-H, Han H-C Choi Y-S, et al. Heart rate variability and obesity indices: emphasis on the response to noise and standing. J Am Board Fam Pract. 2005;18: 97–103. Available: http://www.ncbi.nlm.nih.gov/pubmed/15798138 15798138
33. Zhang J. Effect of age and sex on heart rate variability in healthy subjects. J Manipulative Physiol Ther. 2007;30: 374–9. doi: 10.1016/j.jmpt.2007.04.001 17574955
34. Molfino A, Fiorentini A, Tubani L, Martuscelli M, Rossi Fanelli F, Laviano A. Body mass index is related to autonomic nervous system activity as measured by heart rate variability. Eur J Clin Nutr. 2009;63: 1263–5. doi: 10.1038/ejcn.2009.35 19471292
35. Emdin M, Gastaldelli a, Muscelli E, Macerata a, Natali a, Camastra S, et al. Hyperinsulinemia and autonomic nervous system dysfunction in obesity: effects of weight loss. Circulation. 2001;103: 513–9. Available: http://www.ncbi.nlm.nih.gov/pubmed/11157715 doi: 10.1161/01.cir.103.4.513 11157715
36. Antelmi I, de Paula RS, Shinzato AR, Peres CA, Mansur AJ, Grupi CJ. Influence of age, gender, body mass index, and functional capacity on heart rate variability in a cohort of subjects without heart disease. Am J Cardiol. 2004;93: 381–5. doi: 10.1016/j.amjcard.2003.09.065 14759400
37. Burr RL. Interpretation of normalized spectral heart rate variability indices in sleep research: a critical review. Sleep. 2007;30: 913–9. Available: http://www.ncbi.nlm.nih.gov/pubmed/17682663 doi: 10.1093/sleep/30.7.913 17682663
38. Pénicaud L, Cousin B, Leloup C, Lorsignol a, Casteilla L. The autonomic nervous system, adipose tissue plasticity, and energy balance. Nutrition. 2000;16: 903–8. Available: http://www.ncbi.nlm.nih.gov/pubmed/11054595 doi: 10.1016/s0899-9007(00)00427-5 11054595
39. Spraul M, Ravussin E, Fontvieille AM, Rising R, Larson DE, Anderson EA. Reduced sympathetic nervous activity. A potential mechanism predisposing to body weight gain. J Clin Invest. 1993;92: 1730–1735. doi: 10.1172/JCI116760 8408625
40. Amano M, Kanda T, Ue H, Moritani T. Exercise training and autonomic nervous system activity in obese individuals. Med Sci Sports Exerc. 2001;33: 1287–91. Available: http://www.ncbi.nlm.nih.gov/pubmed/11474328 doi: 10.1097/00005768-200108000-00007 11474328
41. Piccirillo G, Vetta F, Fimognari FL, Ronzoni S, Lama J, Cacciafesta M, et al. Power spectral analysis of heart rate variability in obese subjects: evidence of decreased cardiac sympathetic responsiveness. Int J Obes Relat Metab Disord. 1996;20: 825–9. Available: http://www.ncbi.nlm.nih.gov/pubmed/8880349 8880349
42. Nagai N, Matsumoto T, Kita H, Moritani T. Autonomic nervous system activity and the state and development of obesity in Japanese school children. Obes Res. 2003;11: 25–32. doi: 10.1038/oby.2003.6 12529482
43. Rahman F, Pechnik S, Gross D, Sewell L, Goldstein DS. Low frequency power of heart rate variability reflects baroreflex function, not cardiac sympathetic innervation. Clin Auton Res. 2011;21: 133–41. doi: 10.1007/s10286-010-0098-y 21279414
44. Grossman P, Taylor EW. Toward understanding respiratory sinus arrhythmia: Relations to cardiac vagal tone, evolution and biobehavioral functions. Biol Psychol. 2007;74: 263–285. doi: 10.1016/j.biopsycho.2005.11.014 17081672
45. Levin BE. Arcuate NPY neurons and energy homeostasis in diet-induced obese and resistant rats. Am J Physiol. 1999;276: R382–R387. doi: 10.1152/ajpregu.1999.276.2.R382 9950915
46. Sheema U, Malipatil B. A cross-sectional study on effect of body mass index on the spectral analysis of heart rate variability. Natl J Physiol Pharm Pharmacol. 2015;5: 250. doi: 10.5455/njppp.2015.5.2301201532
47. Yadav RL, Yadav PK, Yadav LK, Agrawal K, Sah SK, Islam MN. Association between obesity and heart rate variability indices: an intuition toward cardiac autonomic alteration—a risk of CVD. Diabetes, Metab Syndr Obes Targets Ther. 2017;Volume 10: 57–64. doi: 10.2147/DMSO.S123935 28255249
48. Rastović M, Srdić-Galić B, Barak O, Stokić E. Association between anthropometric measures of regional fat mass and heart rate variability in obese women. Nutr Diet. 2017;74: 51–60. doi: 10.1111/1747-0080.12280 28731559
49. Dudina A, Cooney MT, Bacquer D De, Backer G De, Ducimetière P, Jousilahti P, et al. Relationships between body mass index, cardiovascular mortality, and risk factors: a report from the SCORE investigators. Eur J Cardiovasc Prev Rehabil. 2011;18: 731–42. doi: 10.1177/1741826711412039 21642320
50. Mazurak N, Enck P, Muth E, Teufel M, Zipfel S. Heart rate variability as a measure of cardiac autonomic function in anorexia nervosa: A review of the literature. Eur Eat Disord Rev. 2010; doi: 10.1002/erv.1081 25363717
51. Narayanaswamy N, Moodithaya S, Halahalli H, Mirajkar AM. Assessment of Risk Factor for Cardiovascular Disease Using Heart Rate Variability in Postmenopausal Women: A Comparative Study between Urban and Rural Indian Women. ISRN Cardiol. 2013;2013: 1–6. doi: 10.1155/2013/858921 23936672
Článek vyšel v časopise
PLOS One
2019 Číslo 9
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Je libo čepici místo mozkového implantátu?
- Pomůže v budoucnu s triáží na pohotovostech umělá inteligence?
- AI může chirurgům poskytnout cenná data i zpětnou vazbu v reálném čase
- Nová metoda odlišení nádorové tkáně může zpřesnit resekci glioblastomů
Nejčtenější v tomto čísle
- Graviola (Annona muricata) attenuates behavioural alterations and testicular oxidative stress induced by streptozotocin in diabetic rats
- CH(II), a cerebroprotein hydrolysate, exhibits potential neuro-protective effect on Alzheimer’s disease
- Comparison between Aptima Assays (Hologic) and the Allplex STI Essential Assay (Seegene) for the diagnosis of Sexually transmitted infections
- Assessment of glucose-6-phosphate dehydrogenase activity using CareStart G6PD rapid diagnostic test and associated genetic variants in Plasmodium vivax malaria endemic setting in Mauritania
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy