Detailed global modelling of soil organic carbon in cropland, grassland and forest soils
Autoři:
Tiago G. Morais aff001; Ricardo F.M. Teixeira aff001; Tiago Domingos aff001
Působiště autorů:
MARETEC–Marine, Environment and Technology Centre, LARSyS, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
aff001
Vyšlo v časopise:
PLoS ONE 14(9)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0222604
Souhrn
Assessments of the global carbon (C) cycle typically rely on simplified models which consider large areas as homogeneous in terms of the response of soils to land use or consider very broad land classes. For example, “cropland” is typically modelled as an aggregation of distinct practices and individual crops over large regions. Here, we use the process-based Rothamsted soil Carbon Model (RothC model), which has a history of being successfully applied at a global scale, to calculate attainable SOC stocks and C mineralization rates for each of c. 17,000 regions (combination of soil type and texture, climate type, initial land use and country) in the World, under near-past climate conditions. We considered 28 individual crops and, for each, multiple production practices, plus 16 forest types and 1 grassland class (total of 80 classes). We find that conversion to cropland can result in SOC increases, particularly when the soil remains covered with crop residues (an average gain of 12 t C/ha) or using irrigation (4 t C/ha), which are mutually reinforcing effects. Attainable SOC stocks vary significantly depending on the land use class, particularly for cropland. Common aggregations in global modelling of a single agricultural class would be inaccurate representations of these results. Attainable SOC stocks obtained here were compared to long-term experiment data and are well aligned with the literature. Our results provide a regional and detailed understanding of C sequestration that will also enable better greenhouse gas reporting at national level as alternatives to IPCC tier 2 defaults.
Klíčová slova:
Biology and life sciences – Agriculture – Agricultural soil science – Crop science – Crops – Agricultural methods – Agricultural irrigation – Agrochemicals – Fertilizers – Ecology – Plant communities – Grasslands – Ecosystems – Forests – Plant science – Plant ecology – Organisms – Eukaryota – Plants – Grasses – Maize – Ecology and environmental sciences – Soil science – Soil mineralization – Terrestrial environments – Research and analysis methods – Animal studies – Experimental organism systems – Model organisms – Plant and algal models
Zdroje
1. Buchholz T, Friedland AJ, Hornig CE, Keeton WS, Zanchi G, Nunery J. Mineral soil carbon fluxes in forests and implications for carbon balance assessments [Internet]. GCB Bioenergy. 2014. pp. 305–311. doi: 10.1111/gcbb.12044
2. Lehmann J, Kleber M. The contentious nature of soil organic matter. Nature. Nature Publishing Group; 2015;528: 60. doi: 10.1038/nature16069 26595271
3. Arnell NW, Lowe JA, Brown S, Gosling SN, Gottschalk P, Hinkel J, et al. A global assessment of the effects of climate policy on the impacts of climate change. Nat Clim Chang. Nature Research; 2013;3: 512–519. doi: 10.1038/nclimate1793
4. Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, et al. Climate Change 2007 Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Climate change 2007: Synthesis Report. Contribution of Working Group I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Summary for Policymakers. 2007. doi: 10.1002/ep.670210305
5. Poeplau C, Don A, Vesterdal L, Leifeld J, Van Wesemael B, Schumacher J, et al. Temporal dynamics of soil organic carbon after land-use change in the temperate zone—carbon response functions as a model approach [Internet]. Global Change Biology. Blackwell Publishing Ltd; 2011. pp. 2415–2427. doi: 10.1111/j.1365-2486.2011.02408.x
6. Popp A, Humpenöder F, Weindl I, Bodirsky BL, Bonsch M, Lotze-Campen H, et al. Land-use protection for climate change mitigation. Nat Clim Chang. Nature Publishing Group; 2014;4: 1095–1098. doi: 10.1038/nclimate2444
7. Guo LB, Gifford RM. Soil carbon stocks and land use change: A meta analysis. Glob Chang Biol. Blackwell Science Ltd; 2002;8: 345–360. doi: 10.1046/j.1354-1013.2002.00486.x
8. Lal R. Soil carbon sequestration impacts on global climate change and food security. Science (80-). 2004;304: 1623–1627 ST-Soil carbon sequestration impacts. doi: 10.1126/science.1097396 15192216
9. Doetterl S, Stevens A, Six J, Merckx R, Van Oost K, Casanova Pinto M, et al. Soil carbon storage controlled by interactions between geochemistry and climate. Nat Geosci. Nature Research; 2015;8: 780–783. doi: 10.1038/ngeo2516
10. Reichstein M, Bahn M, Ciais P, Frank D, Mahecha MD, Seneviratne SI, et al. Climate extremes and the carbon cycle. Nature. Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.; 2013;500: 287–295. Available: doi: 10.1038/nature12350 23955228
11. Koven CD, Hugelius G, Lawrence DM, Wieder WR. Higher climatological temperature sensitivity of soil carbon in cold than warm climates. Nat Clim Chang. Nature Publishing Group; 2017;7: 817–822. doi: 10.1038/nclimate3421
12. Giardina CP, Litton CM, Crow SE, Asner GP. Warming-related increases in soil CO2 efflux are explained by increased below-ground carbon flux. Nat Clim Chang. Nature Publishing Group; 2014;4: 822–827. Available: http://dx.doi.org/10.1038/nclimate2322
13. Harris NL, Brown S, Hagen SC, Saatchi SS, Petrova S, Salas W, et al. Baseline Map of Carbon Emissions from Deforestation in Tropical Regions. Science (80-). 2012;336: 1573–1576. doi: 10.1126/science.1217962 22723420
14. Schrumpf M, Schulze ED, Kaiser K, Schumacher J. How accurately can soil organic carbon stocks and stock changes be quantified by soil inventories? Biogeosciences. 2011;8: 1193–1212. doi: 10.5194/bg-8-1193-2011
15. Smith P. How long before a change in soil organic carbon can be detected? Glob Chang Biol. Blackwell Science Ltd; 2004;10: 1878–1883. doi: 10.1111/j.1365-2486.2004.00854.x
16. Václavík T, Lautenbach S, Kuemmerle T, Seppelt R. Mapping global land system archetypes. Glob Environ Chang. Pergamon; 2013;23: 1637–1647. doi: 10.1016/J.GLOENVCHA.2013.09.004
17. Tóth G, Jones A, Montanarella L. The LUCAS topsoil database and derived information on the regional variability of cropland topsoil properties in the European Union. Environ Monit Assess. 2013;185: 7409–25. doi: 10.1007/s10661-013-3109-3 23371251
18. de Brogniez D, Ballabio C, Stevens A, Jones RJA, Montanarella L, van Wesemael B. A map of the topsoil organic carbon content of Europe generated by a generalized additive model. Eur J Soil Sci. Blackwell Publishing Ltd; 2015;66: 121–134. doi: 10.1111/ejss.12193
19. IPCC. 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Institute for Global Environmental Strategies (IGES) for the Intergovernmental Panel on Climate Change. Kanagawa, Japan: The Intergovernmental Panel on Climate Change (IPCC); 2006.
20. Del Grosso SJ, Gollany HT, Reyes-Fox M, Del Grosso S, Ahuja L, Parton W. Simulating Soil Organic Carbon Stock Changes in Agroecosystems using CQESTR, DayCent, and IPCC Tier 1 Methods. Synthesis and Modeling of Greenhouse Gas Emissions and Carbon Storage in Agricultural and Forest Systems to Guide Mitigation and Adaptation. American Society of Agronomy, Inc., Crop Science Society of America, Inc., and Soil Science Society of America, Inc.; 2016. pp. 89–110. doi: 10.2134/advagricsystmodel6.2013.0001.5
21. Borgen SK, Dalsgaard L, Arnoldussen A. CO2 emissions from Norwegian cropland: influence of IPCC tier level. Soil carbon sequestration Clim food Secur Ecosyst Serv. 2013;27: 101.
22. Berhongaray G, Alvarez R. The IPCC Tool for predicting soil organic carbon changes evaluated for the Pampas, Argentina. Agric Ecosyst Environ. 2013;181: 241–245. doi: 10.1016/j.agee.2013.10.002
23. Batjes NH. Soil organic carbon stocks under native vegetation—Revised estimates for use with the simple assessment option of the Carbon Benefits Project system. Agric Ecosyst Environ. 2011;142: 365–373. doi: 10.1016/j.agee.2011.06.007
24. ECCC. National Inventory Report 1990–2015: Greenhouse Gas Sources and Sinks in Canada. Environment and Climate Change Canada (ECCC); 2017.
25. CITEPA. Rapport National d’Inventaire pour la France au titre de la Convention cadre des Nations Unies sur les Changements Climatiques et du Protocole de Kyoto. Centre Interprofessionnel Technique d’Etudes de la Pollution Atmosphérique; 2017.
26. APA. Portuguese National Inventory Report on Greenhouse Gases, 1990–2018. Amadora, Portugal: Portuguese Environmental Agency; 2018.
27. Monforti F, Lugato E, Motola V, Bodis K, Scarlat N, Dallemand J-F. Optimal energy use of agricultural crop residues preserving soil organic carbon stocks in Europe. Renew Sustain Energy Rev. Pergamon; 2015;44: 519–529. doi: 10.1016/j.rser.2014.12.033
28. Luo Y, Keenan TF, Smith M. Predictability of the terrestrial carbon cycle. Glob Chang Biol. 2015;21: 1737–1751. doi: 10.1111/gcb.12766 25327167
29. Campbell EE, Paustian K. Current developments in soil organic matter modeling and the expansion of model applications: a review. Environ Res Lett. IOP Publishing; 2015;10: 123004. doi: 10.1088/1748-9326/10/12/123004
30. Coleman K, Jenkinson DS, Crocker GJ, Grace PR, Klír J, Körschens M, et al. Simulating trends in soil organic carbon in long-term experiments using RothC-26.3. Geoderma. 1997;81: 29–44. doi: 10.1016/S0016-7061(97)00079-7
31. Liu DL, Chan KY, Conyers MK, Li G, Poile GJ. Simulation of soil organic carbon dynamics under different pasture managements using the RothC carbon model. Geoderma. 2011;165: 69–77. doi: 10.1016/j.geoderma.2011.07.005
32. Gottschalk P, Smith JU, Wattenbach M, Bellarby J, Stehfest E, Arnell N, et al. How will organic carbon stocks in mineral soils evolve under future climate? Global projections using RothC for a range of climate change scenarios. Biogeosciences. Copernicus GmbH; 2012;9: 3151–3171. doi: 10.5194/bg-9-3151-2012
33. Morais TG, Silva C, Jebari A, Álvaro-Fuentes J, Domingos T, Teixeira RFM. A proposal for using process-based soil models for land use Life cycle impact assessment: Application to Alentejo, Portugal. J Clean Prod. 2018;192: 864–876. doi: 10.1016/j.jclepro.2018.05.061
34. Morais TG, Teixeira RFM, Rodrigues NR, Domingos T. Characterizing livestock production in Portuguese sown rainfed grasslands: Applying the inverse approach to a process-based model. Sustainability. Multidisciplinary Digital Publishing Institute; 2018;10: 4437. doi: 10.3390/su10124437
35. Cagnarini C, Renella G, Mayer J, Hirte J, Schulin R, Costerousse B, et al. Multi‐objective calibration of RothC using measured carbon stocks and auxiliary data of a long‐term experiment in Switzerland. Eur J Soil Sci. John Wiley & Sons, Ltd (10.1111); 2019; ejss.12802. doi: 10.1111/ejss.12743
36. Smith J, Smith P, Wattenbach M, Zaehle S, Hiederer R, Jones RJA, et al. Projected changes in mineral soil carbon of European croplands and grasslands, 1990–2080. Glob Chang Biol. Wiley/Blackwell (10.1111); 2005;11: 2141–2152. doi: 10.1111/j.1365-2486.2005.001075.x
37. Ingram JSI, Fernandes ECM. Managing carbon sequestration in soils: concepts and terminology. Agric Ecosyst Environ. Elsevier; 2001;87: 111–117. doi: 10.1016/S0167-8809(01)00145-1
38. Kutsch WL, Bahn M, Heinemeyer A. Soil Carbon Dynamics: An Integrated Methodology [Internet]. Cambridge: Cambridge University Press; 2009. Available: https://www.amazon.com/Soil-Carbon-Dynamics-Integrated-Methodology/dp/0521865611
39. Weihermüller L, Graf A, Herbst M, Vereecken H. Simple pedotransfer functions to initialize reactive carbon pools of the RothC model. Eur J Soil Sci. Blackwell Publishing Ltd; 2013;64: 567–575. doi: 10.1111/ejss.12036
40. Chapagain AK, Hoekstra AY. Water footprint of nations. Volume 1: Main report. Value of Water Research Report Series—Volume 1: Main Report, Value of Water Research Report Series No. 16. Delft. Delft, The Netherlands; 2004.
41. FAO/IIASA. Global Agro-ecological Zones (GAEZ v3.0). IIASA, Laxenburg, Austria FAO, Rome, Italy iv. 2012; doi: 10.1029/97GB03657
42. IPCC. Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories. Volume 2—Workbook. The Intergovernmental Panel on Climate Change (IPCC), the Organization for Economic Co-operation and Development (OECD) and the International Energy Agency (IEA); 1997.
43. IPCC. Good Practice Guidance for Land Use, Land-Use Change and Forestry. Institute for Global Environmental Strategies (IGES) for the Intergovernmental Panel on Climate Change. Kanagawa: The Intergovernmental Panel on Climate Change (IPCC); 2003.
44. FAO. Food and Agriculture Organization of the United Nations—Statistics Division [Internet]. 2018 [cited 25 Mar 2015]. Available: http://faostat.fao.org/
45. Jebari A, del Prado A, Pardo G, Rodríguez Martín JA, Álvaro-Fuentes J. Modeling Regional Effects of Climate Change on Soil Organic Carbon in Spain. J Environ Qual. The American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.; 2018;47: 644. doi: 10.2134/jeq2017.07.0294 30025039
46. Jebari A. Estimación de los cambios en los stocks de carbono del suelo agrícola a escala regional: Impacto de los usos del suelo y del manejo en la Comunidad Autónoma de Aragón. Master Thesis. 2016.
47. Robinson TP, William Wint GR, Conchedda G, Van Boeckel TP, Ercoli V, Palamara E, et al. Mapping the global distribution of livestock. Baylis M, editor. PLoS One. Public Library of Science; 2014;9: e96084. doi: 10.1371/journal.pone.0096084 24875496
48. Mueller ND, Gerber JS, Johnston M, Ray DK, Ramankutty N, Foley JA. Closing yield gaps through nutrient and water management. Nature. Nature Publishing Group; 2012;490: 254–257. doi: 10.1038/nature11420 22932270
49. Román P, Martínez MM, Pantoja A. Farmer’s Compost Handbook—Experiences in Latin America. Santiago, Chile: Food and Agriculture Organization of the United Nations (FAO); 2015.
50. Pfister S, Bayer P, Koehler A, Hellweg S. Environmental impacts of water use in global crop production: hotspots and trade-offs with land use. Environ Sci Technol. American Chemical Society; 2011;45: 5761–8. doi: 10.1021/es1041755 21644578
51. Thornthwaite CW. An Approach toward a Rational Classification of Climate. Geogr Rev. 1948;38: 55. doi: 10.2307/210739
52. DAAC L. MODIS/Terra Land Surface Temperature and Emissivity Monthly L3 Global 0.05Deg CMG [Internet]. 2016. Available: https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/mod11c3
53. NASA. Global Precipitation Analysis [Internet]. 2016. Available: http://precip.gsfc.nasa.gov/
54. Joshi MM, Lambert FH, Webb MJ. An explanation for the difference between twentieth and twenty-first century land–sea warming ratio in climate models. Clim Dyn. Springer Berlin Heidelberg; 2013;41: 1853–1869. doi: 10.1007/s00382-013-1664-5
55. IPCC. Climate Change 2013—The Physical Science Basis. Climate Change 2013—The Physical Science Basis. 2014. doi: 10.1017/cbo9781107415324
56. Donat MG, Lowry AL, Alexander L V., O’Gorman PA, Maher N. More extreme precipitation in the world’s dry and wet regions. Nat Clim Chang. Nature Publishing Group; 2016;6: 508–513. doi: 10.1038/nclimate2941
57. ESDAC. Global Soil Organic Carbon Estimates [Internet]. 2012. Available: http://esdac.jrc.ec.europa.eu/content/global-soil-organic-carbon-estimates
58. FAO, IIASA, ISRIC, ISSCAS, JRC. Harmonized World Soil Database (version 1.2). FAO, Rome, Italy and IIASA, Laxenburg, Austria; 2012. 3123
59. NASA LP DAAC. Land Cover Type Yearly L3 Global 0.05Deg CMG (MCD12C1). In: NASA EOSDIS Land Processes DAAC, USGS Earth Resources Observation and Science (EROS) Center [Internet]. 2017 [cited 20 Feb 2017]. Available: https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/mcd12c1
60. Fischer G, Nachtergaele F, Prieler S, van Velthuizen H, Verelst L, Wiberg D. Global Agro-ecological Zones Assessment for Agriculture [Internet]. 2008. Available: http://www.iiasa.ac.at/Research/LUC/luc07/External-World-soil-database/HTML/index.html?sb=1
61. Thematic Mapping. World Borders Dataset [Internet]. 2009 [cited 20 Feb 2017]. Available: http://thematicmapping.org/downloads/world_borders.php
62. Rothamsted Research. Rothamsted Carbon Model (RothC) [Internet]. 2017.
63. Metropolis N, Ulam S. The Monte Carlo method. J Am Stat Assoc. 1949;44: 335–341. doi: 10.1080/01621459.1949.10483310 18139350
64. Clarivate Analytics. InCites Journal Citation Report [Internet]. 2017 [cited 29 Dec 2017]. Available: https://jcr.incites.thomsonreuters.com/
65. ESDAC. LUCAS 2009 TOPSOIL data [Internet]. 2017 [cited 8 Jan 2017]. Available: http://eusoils.jrc.ec.europa.eu/content/lucas-2009-topsoil-data
66. Nilsson M-C, Wardle DA. Understory vegetation as a forest ecosystem driver: evidence from the northern Swedish boreal forest. Front Ecol Environ. Ecological Society of America; 2005;3: 421–428. doi: 10.1890/1540-9295(2005)003[0421:UVAAFE]2.0.CO;2
67. Mokany K, Raison RJ, Prokushkin AS. Critical analysis of root: Shoot ratios in terrestrial biomes. Glob Chang Biol. Wiley/Blackwell (10.1111); 2006;12: 84–96. doi: 10.1111/j.1365-2486.2005.001043.x
68. Frank AB, Liebig MA, Tanaka DL. Management effects on soil CO2 efflux in northern semiarid grassland and cropland. Soil Tillage Res. Elsevier; 2006;89: 78–85. doi: 10.1016/J.STILL.2005.06.009
69. Lee X, Huang Y, Huang D, Hu L, Feng Z, Cheng J, et al. Variation of Soil Organic Carbon and Its Major Constraints in East Central Asia. Hui D, editor. PLoS One. Public Library of Science; 2016;11: e0150709. doi: 10.1371/journal.pone.0150709 26934707
70. Wieder WR, Bonan GB, Allison SD. Global soil carbon projections are improved by modelling microbial processes. Nat Clim Chang. Nature Publishing Group; 2013;3: 909–912. doi: 10.1038/nclimate1951
71. Bationo A, Kihara J, Vanlauwe B, Waswa B, Kimetu J. Soil organic carbon dynamics, functions and management in West African agro-ecosystems. Agric Syst. Elsevier; 2007;94: 13–25. doi: 10.1016/j.agsy.2005.08.011
72. Wang G, Luo Z, Han P, Chen H, Xu J. Critical carbon input to maintain current soil organic carbon stocks in global wheat systems. Sci Rep. Nature Publishing Group; 2016;6: 19327. doi: 10.1038/srep19327 26759192
73. Luo Z, Wang E, Sun OJ. Can no-tillage stimulate carbon sequestration in agricultural soils? A meta-analysis of paired experiments. Agric Ecosyst Environ. Elsevier; 2010;139: 224–231. doi: 10.1016/J.AGEE.2010.08.006
74. Cai ZC, Qin SW. Dynamics of crop yields and soil organic carbon in a long-term fertilization experiment in the Huang-Huai-Hai Plain of China. Geoderma. Elsevier; 2006;136: 708–715. doi: 10.1016/J.GEODERMA.2006.05.008
75. Zhang W, Liu K, Wang J, Shao X, Xu M, Li J, et al. Relative contribution of maize and external manure amendment to soil carbon sequestration in a long-term intensive maize cropping system. Sci Rep. Nature Publishing Group; 2015;5: 10791. doi: 10.1038/srep10791 26039186
76. Lemke RL, VandenBygaart AJ, Campbell CA, Lafond GP, Grant B. Crop residue removal and fertilizer N: Effects on soil organic carbon in a long-term crop rotation experiment on a Udic Boroll. Agric Ecosyst Environ. Elsevier; 2010;135: 42–51. doi: 10.1016/J.AGEE.2009.08.010
77. Ludwig B, John B, Ellerbrock R, Kaiser M, Flessa H. Stabilization of carbon from maize in a sandy soil in a long-term experiment. Eur J Soil Sci. John Wiley & Sons, Ltd; 2003;54: 117–126. doi: 10.1046/j.1365-2389.2003.00496.x
78. Manna MC, Swarup A, Wanjari RH, Ravankar HN, Mishra B, Saha MN, et al. Long-term effect of fertilizer and manure application on soil organic carbon storage, soil quality and yield sustainability under sub-humid and semi-arid tropical India. F Crop Res. Elsevier; 2005;93: 264–280. doi: 10.1016/j.fcr.2004.10.006
79. Bationo A, Buerkert A. Soil organic carbon management for sustainable land use in Sudano-Sahelian West Africa. Nutr Cycl Agroecosystems. Kluwer Academic Publishers; 2001;61: 131–142. doi: 10.1023/A:1013355822946
80. Jarvis SC, Stockdale EA, Shepherd MA, Powlson DS. Nitrogen Mineralization in Temperate Agricultural Soils: Processes and Measurement. Adv Agron. Academic Press; 1996;57: 187–235. doi: 10.1016/S0065-2113(08)60925-6
81. Rey A, Petsikos C, Jarvis PG, Grace J. Effect of temperature and moisture on rates of carbon mineralization in a Mediterranean oak forest soil under controlled and field conditions. Eur J Soil Sci. Blackwell Science Ltd; 2005;56: 589–599. doi: 10.1111/j.1365-2389.2004.00699.x
82. Ding S, Xue S, Liu G. Effects of long-term fertilization on oxidizable organic carbon fractions on the Loess Plateau, China. J Arid Land. Science Press; 2016;8: 579–590. doi: 10.1007/s40333-016-0007-x
83. Duiker SW, Lal R. Crop residue and tillage effects on carbon sequestration in a Luvisol in central Ohio. Soil Tillage Res. Elsevier; 1999;52: 73–81. doi: 10.1016/S0167-1987(99)00059-8
84. Morais TG, Domingos T, Teixeira RFM. A spatially explicit life cycle assessment midpoint indicator for soil quality in the European Union using soil organic carbon. Int J Life Cycle Assess. Springer Berlin Heidelberg; 2016;21: 1076–1091. doi: 10.1007/s11367-016-1077-x
85. Jones C, McConnell C, Coleman K, Cox P, Falloon P, Jenkinson D, et al. Global climate change and soil carbon stocks; predictions from two contrasting models for the turnover of organic carbon in soil. Glob Chang Biol. Blackwell Science Ltd; 2005;11: 154–166. doi: 10.1111/j.1365-2486.2004.00885.x
86. Shirato Y, Hakamata T, Taniyama I. Modified rothamsted carbon model for andosols and its validation: changing humus decomposition rate constant with pyrophosphate-extractable Al. Soil Sci Plant Nutr. Taylor & Francis Group; 2004;50: 149–158. doi: 10.1080/00380768.2004.10408463
87. Luo Z, Wang E, Zheng H, Baldock JA, Sun OJ, Shao Q. Convergent modelling of past soil organic carbon stocks but divergent projections. Biogeosciences. 2015;12: 4373–4383. doi: 10.5194/bg-12-4373-2015
88. Álvaro-Fuentes J, Morell FJ, Plaza-Bonilla D, Arrúe JL, Cantero-Martínez C. Modelling tillage and nitrogen fertilization effects on soil organic carbon dynamics. Soil Tillage Res. Elsevier; 2012;120: 32–39. doi: 10.1016/J.STILL.2012.01.009
89. Farina R, Coleman K, Whitmore AP. Modification of the RothC model for simulations of soil organic C dynamics in dryland regions. Geoderma. Elsevier; 2013;200–201: 18–30. doi: 10.1016/J.GEODERMA.2013.01.021
90. Parton WJ, Schimel DS, Cole C V., Ojima DS. Analysis of Factors Controlling Soil Organic Matter Levels in Great Plains Grasslands. Soil Sci Soc Am J. Soil Science Society of America; 1987;51: 1173–1179. doi: 10.2136/SSSAJ1987.03615995005100050015X
91. Li C, Frolking S, Frolking TA. A model of nitrous oxide evolution from soil driven by rainfall events: 1. Model structure and sensitivity. J Geophys Res Atmos. Wiley-Blackwell; 1992;97: 9759–9776. doi: 10.1029/92JD00509
92. Brejda JJ, Moorman TB, Smith JL, Karlen DL, Allan DL, Dao TH. Distribution and Variability of Surface Soil Properties at a Regional Scale. Soil Sci Soc Am J. 2010; doi: 10.2136/sssaj2000.643974x
93. Taghizadeh-Toosi A, Christensen BT, Glendining M, Olesen JE. Consolidating soil carbon turnover models by improved estimates of belowground carbon input. Sci Rep. Nature Publishing Group; 2016;6: 32568. doi: 10.1038/srep32568 27580672
94. Smith J, Smith P, Wattenbach M, Gottschalk P, Romanenkov VA, Shevtsova LK, et al. Projected changes in the organic carbon stocks of cropland mineral soils of European Russia and the Ukraine, 1990–2070. Glob Chang Biol. John Wiley & Sons, Ltd; 2007;13: 342–356. doi: 10.1111/j.1365-2486.2006.01297.x
95. Hu T, Sørensen P, Wahlström EM, Chirinda N, Sharif B, Li X, et al. Root biomass in cereals, catch crops and weeds can be reliably estimated without considering aboveground biomass. Agric Ecosyst Environ. Elsevier; 2018;251: 141–148. doi: 10.1016/J.AGEE.2017.09.024
96. Aguilera E, Guzmán GI, Álvaro-Fuentes J, Infante-Amate J, García-Ruiz R, Carranza-Gallego G, et al. A historical perspective on soil organic carbon in Mediterranean cropland (Spain, 1900–2008). Sci Total Environ. 2018;621: 634–648. doi: 10.1016/j.scitotenv.2017.11.243 29202285
97. Powlson DS, Stirling CM, Jat ML, Gerard BG, Palm CA, Sanchez PA, et al. Limited potential of no-till agriculture for climate change mitigation. Nat Clim Chang. Nature Publishing Group; 2014;4: 678–683. doi: 10.1038/nclimate2292
98. Souza DM, Teixeira RFM, Ostermann OP. Assessing biodiversity loss due to land use with Life Cycle Assessment: are we there yet? Glob Chang Biol. 2015;21: 32–47. doi: 10.1111/gcb.12709 25143302
99. Teixeira RFM, Maia de Souza D, Curran MP, Antón A, Michelsen O, Milà i Canals L. Towards consensus on land use impacts on biodiversity in LCA: UNEP/SETAC Life Cycle Initiative preliminary recommendations based on expert contributions. J Clean Prod. 2016;112: 4283–4287. doi: 10.1016/j.jclepro.2015.07.118
100. Curran M, de Souza DM, Antón A, Teixeira RFM, Michelsen O, Vidal-Legaz B, et al. How Well Does LCA Model Land Use Impacts on Biodiversity?-A Comparison with Approaches from Ecology and Conservation. Environ Sci Technol. American Chemical Society; 2016;50: 2782–95. doi: 10.1021/acs.est.5b04681 26830787
101. Vidal Legaz B, Maia De Souza D, Teixeira RFM, Antón A, Putman B, Sala S. Soil quality, properties, and functions in life cycle assessment: an evaluation of models. J Clean Prod. 2017;140: 502–515. doi: 10.1016/j.jclepro.2016.05.077
102. Teixeira RFM, Morais TG, Domingos T. A Practical Comparison of Regionalized Land Use and Biodiversity Life Cycle Impact Assessment Models Using Livestock Production as a Case Study. Sustainability. Multidisciplinary Digital Publishing Institute; 2018;10: 4089. doi: 10.3390/SU10114089
103. Milà i Canals L, Muñoz I, McLaren S, Brandão M. LCA Methodology and Modelling Considerations for Vegetable Production and Consumption [Internet]. CES Working Papers 02/07; 2007. Available: http://www.ces-surrey.org.uk/
104. Brandão M, Milà i Canals L. Global characterisation factors to assess land use impacts on biotic production. Int J Life Cycle Assess. 2013;18: 1243–1252. doi: 10.1007/s11367-012-0381-3
105. Teixeira RFM, Morais TG, Domingos T. Consolidating Regionalized Global Characterization Factors for Soil Organic Carbon Depletion Due to Land Occupation and Transformation. Environ Sci Technol. American Chemical Society; 2018;52: 12436–12444. doi: 10.1021/acs.est.8b00721 30253100
Článek vyšel v časopise
PLOS One
2019 Číslo 9
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Je libo čepici místo mozkového implantátu?
- Pomůže v budoucnu s triáží na pohotovostech umělá inteligence?
- AI může chirurgům poskytnout cenná data i zpětnou vazbu v reálném čase
- Nová metoda odlišení nádorové tkáně může zpřesnit resekci glioblastomů
Nejčtenější v tomto čísle
- Graviola (Annona muricata) attenuates behavioural alterations and testicular oxidative stress induced by streptozotocin in diabetic rats
- CH(II), a cerebroprotein hydrolysate, exhibits potential neuro-protective effect on Alzheimer’s disease
- Comparison between Aptima Assays (Hologic) and the Allplex STI Essential Assay (Seegene) for the diagnosis of Sexually transmitted infections
- Assessment of glucose-6-phosphate dehydrogenase activity using CareStart G6PD rapid diagnostic test and associated genetic variants in Plasmodium vivax malaria endemic setting in Mauritania