Influence of musculotendon geometry variability in muscle forces and hip bone-on-bone forces during walking
Autoři:
E. Martín-Sosa aff001; J. Martínez-Reina aff001; J. Mayo aff001; J. Ojeda aff001
Působiště autorů:
Departamento de Ingeniería Mecánica y Fabricación, Universidad de Sevilla, Seville, Spain
aff001
Vyšlo v časopise:
PLoS ONE 14(9)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0222491
Souhrn
Inverse dynamics problems are usually solved in the analysis of human gait to obtain reaction forces and moments at the joints. However, these actions are not the actual forces and moments supported by the joint structure, because they do not consider the forces of the muscles acting across the joint. Therefore, to analyse bone-on bone forces it is necessary to estimate those muscle forces. Usually, this problem is addressed by means of optimization algorithms. One of the parameters required to solve this problem is the musculotendon geometry. These data are usually taken from cadavers or MRI data from several subjects, different from the analysed subject. Then, the model is scaled to the subject morphology. This procedure constitutes a source of error. The goals of this work were two. First, to perform a sensitivity analysis of the influence of muscle insertion locations on the muscle forces acting on the hip joint and on the hip joint bone-on-bone forces. Second, to compare the hip joint bone-on-bone forces during gait cycle obtained through muscle insertion locations taken from a musculoskeletal model template and a scaling procedure to those obtained from a subject-specific model using an MRI of the subject. The problem was solved using OpenSim. Results showed that anatomical variability should be analysed from two perspectives. One the one hand, throughout the gait cycle, in a global way. On the other hand, at a characteristic instant of the gait cycle. Variations of ±1 cm in the position of the attachment points of certain muscles caused variations of up to 14.21% in averaged deviation of the muscle forces and 58.96% in the peak force in the modified muscle and variations up to 57.23% in the averaged deviation of the muscle force and up to 117.23% in the peak force in the rest of muscles. Then, the influence of that variability on muscle activity patterns and hip bone-on-bone forces could be described more precisely. A biomechanical analysis of a subject-specific musculoskeletal model was carried out. Using MRI data, variations up to 5 cm in the location of the insertion points were introduced. These modifications showed significant differences between the baseline model and the customized model: within the range [-12%, 10%] for muscle forces and around 35% of body weight for hip bone-on-bone forces.
Klíčová slova:
Biomechanics – Gait analysis – Hip – Kinematics – Magnetic resonance imaging – Musculoskeletal mechanics – Skeletal joints – Ants
Zdroje
1. Hinrichsen G. J., Storey E. The Effect of Force on Bone and Bones. Angle Orthod.1968; 38: 155–165.
2. Michnik R., Jurkoi J., Guzik A., Tejszerska D. Analysis of loads of the lower limb during gait, carried out with use of the mathematical model, make for patients during rehabilitation progress. 3rd International Conference on Information Technologies in Biomedicine, ITIB 2012; Gliwice; Poland; 11 June 2012 through 13 June 2012; Code 90405. Pages 464–471
3. Quental C., Folgado J., Ambrosio J. Multibody system of the upper limb including a reverse shoulder prosthesis. Journal of Biomechanical Engineering. 2013 Nov;135(11):111005. doi: 10.1115/1.4025325 24008920
4. Thambyah A., Pereira B. P., Wyss U. Estimation of bone-on-bone contact forces in the tibiofemoral joint during walking. Knee. 2005; 12: 383–388. doi: 10.1016/j.knee.2004.12.005 16146627
5. Roemer K., Jungnickel U., Lindmer F., Milani T. L. Multi-body system model of the knee joint and its applications. Mathematical and Computer Modelling of Dyanamical Systems. 2010; 16: 391–402.
6. Wang X., Ma Y., Hou B. Y., Lam W. K. Influence of Gait Speed on Contact Forces of Lower Limbs. Journal of Healthcare Engineering. 2017;2017:6375976. doi: 10.1155/2017/6375976 29065630
7. Damm P., Dymke J., Bender A., Duda G., Gergmann G. In vivo hip joint loads and pedal forces during ergometer cycling. Journal of Biomechanics. 2017; 60: 197–202. doi: 10.1016/j.jbiomech.2017.06.047 28709659
8. Graham D. F., Modenese L., Trewartha G., Carty C. P., Constantinou M., Lloyd D. G., Barrett R. S. Hip joint contact loads in older adults during recovery from forward loss of balance by stepping. Journal of Biomechanics. 2016; 49: 2619–2624. doi: 10.1016/j.jbiomech.2016.05.033 27288331
9. Vaughan C. L., Davis B. L., O’Connor J. C. Dynamics of Human Gait. Kiboho Publishers. Cape Town; 1999.
10. Ojeda J., Martínez-Reina J., Mayo J. The effect of kinematic constraints in the inverse dynamics problem in biomechanics. Multibody System Dynamics. 2016; 37: 291–309.
11. Winter D. A. Biomechanics and Motor Control of Human Movement. 4th ed. Waterloo. Ontario. University of Waterloo;1990.
12. Anderson FC, Pandy MG. Static and dynamic optimization solutions for gait are practically equivalent. Journal of Biomechanics. 2001; 34: 153–161. doi: 10.1016/s0021-9290(00)00155-x 11165278
13. Ojeda J. Application of multibody system techniques to human locomotor system. PhD Thesis. https://idus.us.es/xmlui/handle/11441/15846. Accessed 27 December 2018.
14. Delp S. L., Anderson F. C., Arnold A. S., Loan P., Habib A., John C. T., Guendelman E., Thelen D. G. OpenSim: open-source software to create and analyze dynamic simulations of movement, IEEE Trans. Biomed. Eng. 2007 54 1940–1950.
15. Wesseling M., De Groote F., Bosmans L., Bartels W., Meyer C., Desloovere K., Jonkers I. Subject-specific geometrical detail rather than cost function formulation affects hip loading calculation. Computer Methods in Biomechanics and Biomedical Engineering. 2016; 19: 1475–1488. doi: 10.1080/10255842.2016.1154547 26930478
16. Ardestani M. M., Moazen M. How human gait responds to muscle impairment in total knee arthroplasty patients: Muscular compensations and articular pertubations. Journal of Biomechanics. 2016; 49: 1620–1633. doi: 10.1016/j.jbiomech.2016.03.047 27063251
17. Saliba C. M., Brandon S. C. E. Sensitivity of medial and lateral knee contact force predictions to frontal plane alignment and contact locations. Journal of Biomechanics. 2017; 57: 125–130. doi: 10.1016/j.jbiomech.2017.03.005 28342531
18. Valente G., Pitto L., Testi D., Seth A., Delp S. L., et al. Are subject-specific musculoskeletal models robust to the uncertainties in paremeter identification? PLoS One 9, 2014; 11: e112625. doi: 10.1371/journal.pone.0112625 25390896
19. Carbone V., van der Krogt M. M., Koopman H. F. J. M., Verdonschot N. Sensitivity of subject-specific models to error in musculo-skeletal geometry. Journal of Biomechanics. 2012; 45: 2476–2480. doi: 10.1016/j.jbiomech.2012.06.026 22867762
20. Bosmans L., Valente G., Wesseling M., Van Campen A., De Groote F., De Schutter J. Sensitivity of predicted muscle forces during gait to anatomical variability in musculotendon geometry. Journal of Biomechanics. 2015; 48: 2116–2123. doi: 10.1016/j.jbiomech.2015.02.052 25979383
21. Sutherland D. H. The evolution of clinical gait analysis part II: kinematics. Gait and Posture,2002; 16: 159–179. 12297257
22. Van der Helm F. C. T., Veenbaas R. Modelling the mechanical effect of muscles with large attachment sites: Application to the shoulder mechanism. Journal of Biomechanics. 1991; 24: 1151–1163. doi: 10.1016/0021-9290(91)90007-a 1769980
23. Brand R. A., Pedersen D. R., Davy D. T., Kotzar G. M., Heiple K. G., Goldberg V. M. Comparison of hip force calculations and measurements in the same patient. The Journal of Arthroplasty. 1994; 9: 45–51. 8163975
24. Brand R. A., Pedersen D. R., Friederich J. A. The sensitivity of muscle force predictions to changes in physiologic cross-sectional area. Journal of Biomechanics. 1986; 19: 589–596. doi: 10.1016/0021-9290(86)90164-8 3771581
25. Lu T. W., O’Connor J. J. Bone position estimation from skin marker co-ordinates using global optimisation with joint constrain. Gait and Posture. 1999; 30: 296–302.
26. Steele K. M., DeMers M. S., Schwartz M. H. Delp S. L. Compressive tibiofemoral force during crouch gait. Gait and Posture. 2012; 35: 556–560. doi: 10.1016/j.gaitpost.2011.11.023 22206783
27. Winter D. A. The Biomechanics and Motor Control of Human Gait: Normal, Elderly and Pathological. 2nd ed. Waterloo. Ontario. University of Waterloo;1991.
28. Bergmann, G. (ed.). Charité Universitaetsmedizin Berlin. 2008. http://www.OrthoLoad.com
29. Slater A. A., Hullfish T. J., Baxter J. R. The impact of thigh and shank marker quantity on lower extremity kinematics using a constrained model. BMC Musculoskeletal Disorders. 2018; 19: 399. doi: 10.1186/s12891-018-2329-7 30424811
30. Daysal G. A., Goker B., Gonen E., Demirag M. D., Haznedaroglu S., Ozturk M. A., et al. The relationship between hip joint space width, center edge angle and acetabular depth. Osteoarthritis and Cartilage. 2007; 15: 1446–1451. doi: 10.1016/j.joca.2007.05.016 17629513
Článek vyšel v časopise
PLOS One
2019 Číslo 9
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Je libo čepici místo mozkového implantátu?
- Pomůže v budoucnu s triáží na pohotovostech umělá inteligence?
- AI může chirurgům poskytnout cenná data i zpětnou vazbu v reálném čase
- Nová metoda odlišení nádorové tkáně může zpřesnit resekci glioblastomů
Nejčtenější v tomto čísle
- Graviola (Annona muricata) attenuates behavioural alterations and testicular oxidative stress induced by streptozotocin in diabetic rats
- CH(II), a cerebroprotein hydrolysate, exhibits potential neuro-protective effect on Alzheimer’s disease
- Comparison between Aptima Assays (Hologic) and the Allplex STI Essential Assay (Seegene) for the diagnosis of Sexually transmitted infections
- Assessment of glucose-6-phosphate dehydrogenase activity using CareStart G6PD rapid diagnostic test and associated genetic variants in Plasmodium vivax malaria endemic setting in Mauritania
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy