#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Quantitation of free glycation compounds in saliva


Autoři: Friederike Manig aff001;  Michael Hellwig aff001;  Franziska Pietz aff001;  Thomas Henle aff001
Působiště autorů: Chair of Food Chemistry, Technische Universität Dresden, Dresden, Germany aff001
Vyšlo v časopise: PLoS ONE 14(9)
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pone.0220208

Souhrn

In the course of the Maillard reaction, which occurs during heating of food but also under physiological condition, a broad spectrum of reaction products is formed. Among them, the advanced glycation endproducts (AGEs) Nε-carboxymethyllysine (CML), pyrraline (Pyr), methylglyoxal-derived hydroimidazolone 1 (MG-H1) and Nε-carboxyethyllysine (CEL) are the quantitatively dominating compounds during later reaction stages. Those dietary glycation compounds are under discussion as to be associated with chronic inflammation and the pathophysiological consequences of diseases such as diabetes. In the present study, the concentration of individual glycation compounds in saliva was monitored for the first time and related to their dietary uptake. Fasting saliva of 33 metabolically healthy subjects was analyzed with HPLC-MS/MS. The observed levels of individual glycation compounds ranged from 0.5 to 55.2 ng/ml and differed both intra- and interindividually. Patterns did not correlate with subject-related features such as vegetarianism or sports activities, indicating that dietary intake may play an important role. Therefore, six volunteers were asked to eat a raw food diet free of glycation compounds for two days. Within two days, salivary Pyr was lowered from median 1.7 ng/ml to a minimum level below the limit of detection, and MG-H1 decreased from 3.6 to 1.7 ng/ml in in a time-dependent manner after two days. Salivary CML and CEL concentrations were not affected. Therefore, measuring Pyr and MG-H1 in saliva is a suitable diagnostic tool to monitor the dietary intake and metabolic transit of glycation compounds present in heated foods.

Klíčová slova:

Biology and life sciences – Anatomy – Body fluids – Saliva – Physiology – Biochemistry – Proteins – Post-translational modification – Glycation – Amino acids – Basic amino acids – Lysine – Molecular biology – Molecular biology techniques – Molecular biology assays and analysis techniques – Amino acid analysis – Nutrition – Diet – Food – Medicine and health sciences – Urine – Research and analysis methods – Physical sciences – Chemistry – Chemical reactions – Maillard reaction – Chemical compounds – Organic compounds – Organic chemistry


Zdroje

1. Erbersdobler HF, Somoza V. Forty years of furosine—Forty years of using Maillard reaction products as indicators of the nutritional quality of foods. Mol Nutr Food Res. 2007;51: 423–430. doi: 10.1002/mnfr.200600154 17390403

2. Finot PA, Deutsch R, Bujard E. The extent of the Maillard reaction during the processing of milk. Prog Food Nutr Sci. 1981;5: 159–176. 6798628

3. Brownlee M, Vlassara H, Cerami A. Nonenzymatic glycosylation and the pathogenesis of diabetic complications. Annals of Internal Medicine. 1984; 527–537.

4. Ahmad S, Shahab U, Baig MH, Khan MS, Khan MS, Srivastava AK, et al. Inhibitory Effect of Metformin and Pyridoxamine in the Formation of Early, Intermediate and Advanced Glycation End-Products. PLoS One. 2013; 4: e72128. doi: 10.1371/journal.pone.0072128 24023728

5. Ahmed MU, Thorpe SR, Baynes JW. Identification of N(epsilon)-carboxymethyllysine as a degradation product of fructoselysine in glycated protein. J Biol Chem. 1986;261: 4889–4894. 3082871

6. Glomb MA, Monnier VM. Mechanism of protein modification by glyoxal and glycolaldehyde, reactive intermediates of the Maillard reaction. J Biol Chem. 1995;270: 10017–10026. doi: 10.1074/jbc.270.17.10017 7730303

7. Ferreira AEN, Ponces Freire AMJ, Voit EO. A quantitative model of the generation of N(epsilon)-(carboxymethyl)lysine in the Maillard reaction between collagen and glucose. Biochem J. 2003;376: 109–121. doi: 10.1042/BJ20030496 12911334

8. Ahmed MU, Brinkmann Frye E, Degenhardt TP, Thorpe SR, Baynes JW. N-epsilon-(carboxyethyl)lysine, a product of the chemical modification of proteins by methylglyoxal, increases with age in human lens proteins. Biochem J. 1997;324: 565–570. doi: 10.1042/bj3240565 9182719

9. Nakayama T, Hayase F, Kato H. Formation of ε-(2-formyl-5-hydroxy-methyl-pyrrol-1-yl)-L-norleucine in the Maillard Reaction between D-glucose and L-Lysine. Agric Biol Chem. 1980;44: 1201–1202.

10. Henle T, Klostermeyer H. Determination of protein-bound 2-amino-6-(2-formyl-1-pyrrolyl)-hexanoic acid (“pyrraline”) by ion exchange chromatography and photodiode array detection. Z Lebensm Unters Forsch. 1993;196: 1–4.

11. Thornalley PJ, Battah S, Ahmed N, Karachalias N, Agalou S, Babaei-Jadidi R, et al. Quantitative screening of advanced glycation endproducts in cellular and extracellular proteins by tandem mass spectrometry. Biochem J. 2003;375: 581–92. doi: 10.1042/BJ20030763 12885296

12. Ahmed N, Mirshekar-Syahkal B, Kennish L, Karachalias N, Babaei-Jadidi R, Thornalley PJ. Assay of advanced glycation endproducts in selected beverages and food by liquid chromatography with tandem mass spectrometric detection. Mol Nutr Food Res. 2005;49: 691–699. doi: 10.1002/mnfr.200500008 15945118

13. Ledl F, Schleicher E. New aspects of the Maillard reaction in foods and in the human-body. Angew Chemie-International Ed. 1990;29: 565–594.

14. Vlassara H, Cai W, Crandall J, Goldberg T, Oberstein R, Dardaine V, et al. Inflammatory mediators are induced by dietary glycotoxins, a major risk factor for diabetic angiopathy. Proc Natl Acad Sci U S A. 2002;99: 15596–15601. doi: 10.1073/pnas.242407999 12429856

15. Vlassara H, Uribarri J. Advanced glycation end products (AGE) and diabetes: Cause, effect, or both? Curr Diab Rep. 2014;14: 453. https://doi.org/10.1007/s11892-013-0453-1 24292971

16. Uribarri J, Woodruff S, Goodman S, Cai W, Chen X, Pyzik R, et al. Advanced glycation end products in foods and a practical guide to their reduction in the diet. J Am Diet Assoc. 2010;110: 911–916. doi: 10.1016/j.jada.2010.03.018 20497781

17. Vlassara H, Woodruff S, Striker GE. Dr. Vlassara’s AGE-Less Diet: How a chemical in the foods we eat promotes disease, obesity, and aging and the steps we can take to stop it. 1st ed. Square One Publishers; 2016.

18. Scheijen JLJM, Hanssen NMJ, van Greevenbroek MM, Van der Kallen CJ, Feskens EJM, Stehouwer CDA, et al. Dietary intake of advanced glycation endproducts is associated with higher levels of advanced glycation endproducts in plasma and urine: The CODAM study. Clin Nutr. 2018;37: 919–925. doi: 10.1016/j.clnu.2017.03.019 29381139

19. Hellwig M, Henle T. Quantification of the Maillard reaction product 6-(2-formyl-1-pyrrolyl)-l-norleucine (formyline) in food. Eur Food Res Technol. 2012;235: 99–106.

20. Tuohy KM, Hinton DJS, Davies SJ, Crabbe MJC, Gibson GR, Ames JM. Metabolism of maillard reaction products by the human gut microbiota—implications for health. Mol Nutr Food Res. 2006;50: 847–857. doi: 10.1002/mnfr.200500126 16671057

21. Hellwig M, Matthes R, Peto A, Löbner J, Henle T. N-ε-fructosyllysine and N-ε-carboxymethyllysine, but not lysinoalanine, are available for absorption after simulated gastrointestinal digestion. Amino Acids. 2014;46: 289–299. doi: 10.1007/s00726-013-1501-5 23609106

22. Hellwig M, Henle T. Release of pyrraline in absorbable peptides during simulated digestion of casein glycated by 3-deoxyglucosone. Eur Food Res Technol. 2013;237: 47–55.

23. Hellwig M, Geissler S, Matthes R, Peto A, Silow C, Brandsch M, et al. Transport of free and peptide-bound glycated amino acids: synthesis, transepithelial flux at Caco-2 cell monolayers, and interaction with apical membrane transport proteins. ChemBioChem. 2011;12: 1270–1279. doi: 10.1002/cbic.201000759 21538757

24. Hellwig M, Geissler S, Peto A, Knütter I, Brandsch M, Henle T. Transport of free and peptide-bound pyrraline at intestinal and renal epithelial cells. J Agric Food Chem. 2009;57: 6474–6480. doi: 10.1021/jf901224p 19555106

25. Lee K, Erbersdobler HF. Balance experiments on human volunteers with ε-fructoselysine (FL) and lysinoalanine (LAL). In: Maillard reactions in chemistry, food and health. Labuza TP, Reineccius GA, Monnier VM, ÓBrien J, Baynes JW: Royal Society of Chemistry, Cambridge; 1994; 358–363.

26. Erbersdobler HF, Faist V. Metabolic transit of Amadori products. Nahrung/Food. 2001;45: 177–181. doi: 10.1002/1521-3803(20010601)45:3<177::AID-FOOD177>3.0.CO;2-A 11455784

27. Förster A, Kühne Y, Henle T. Studies on absorption and elimination of dietary maillard reaction products. Ann N Y Acad Sci. 2005;1043: 474–481. doi: 10.1196/annals.1333.054 16037269

28. Dolan K, Rouen D, Kimber J. An overview of the use of urine, hair, sweat and saliva to detect drug use. Drug Alcohol Rev. 2004;23: 213–217. doi: 10.1080/09595230410001704208 15370028

29. Büttler RM, Bagci E, Brand HS, Heijer M den, Blankenstein MA, Heijboer AC. Testosterone, androstenedione, cortisol and cortisone levels in human unstimulated, stimulated and parotid saliva. Steroids. 2018;138: 26–34. doi: 10.1016/j.steroids.2018.05.013 29864449

30. Schievano E, Finotello C, Navarini L, Mammi S. Quantification of caffeine in human saliva by nuclear magnetic resonance as an alternative method for cytochrome CYP1A2 phenotyping. Talanta. 2015;140: 36–41. doi: 10.1016/j.talanta.2015.03.004 26048820

31. Gupta S, Sandhu SV, Bansal H, Sharma D. Comparison of salivary and serum glucose levels in diabetic patients. J Diabetes Sci Technol. 2015;9: 91–96. doi: 10.1177/1932296814552673 25294888

32. Javaid MA, Ahmed AS, Durand R, Tran SD. Saliva as a diagnostic tool for oral and systemic diseases. J Oral Biol Craniofac Res. 2016;6: 67–76.

33. Kaczor-Urbanowicz KE, Martin Carreras-Presas C, Aro K, Tu M, Garcia-Godoy F, Wong DTW. Saliva diagnostics—Current views and directions. Exp Biol Med. 2017;5: 459–472.

34. Pfaffe T, Cooper-White J, Beyerlein P, Kostner K, Punyadeera C. Diagnostic potential of saliva: Current state and future applications. Clin Chem. 2011;57 675–687. doi: 10.1373/clinchem.2010.153767 21383043

35. Cheng F, Wang Z, Huang Y, Duan Y, Wang X. Investigation of salivary free amino acid profile for early diagnosis of breast cancer with ultra performance liquid chromatography-mass spectrometry. Clin Chim Acta. 2015;447: 23–31. doi: 10.1016/j.cca.2015.05.008 25987308

36. Hassaneen M, Maron JL. Salivary Diagnostics in Pediatrics: Applicability, Translatability, and Limitations. Front Public Heal. 2017;5:83. doi: 10.3389/fpubh.2017.00083 28473973

37. Hartman M-L, Goodson JM, Barake R, Alsmadi O, Al-Mutawa S, Ariga J, et al. Salivary biomarkers in pediatric metabolic disease research. Pediatr Endocrinol Rev. 2016;13: 602–11. 27116847

38. Liappis N, Pohl B, Weber HP, El-Karkani H. Free amino acids in the saliva of children with phenylketonuria. Klin Padiatr. 1986;198: 25–28. doi: 10.1055/s-2008-1026847 3959486

39. Reddy I, Sherlin HJ, Ramani P, Premkumar P, Natesan A, Chandrasekar T. Amino acid profile of saliva from patients with oral squamous cell carcinoma using high performance liquid chromatography. J Oral Sci. 2012;54: 279–283. 23047040

40. Arantes LMRB, De Carvalho AC, Melendez ME, Lopes Carvalho A. Serum, plasma and saliva biomarkers for head and neck cancer. Expert Rev Mol Diagn. 2018;18: 85–112. doi: 10.1080/14737159.2017.1404906 29134827

41. Gualtero DF, Suarez Castillo A. Biomarkers in saliva for the detection of oral squamous cell carcinoma and their potential use for early diagnosis: a systematic review. Acta Odontol Scand. 2016;74: 170–177. doi: 10.3109/00016357.2015.1110249 26577643

42. Lasisi TJ, Raji YR, Salako BL. Salivary creatinine and urea analysis in patients with chronic kidney disease: a case control study. BMC Nephrol. 2016;17: 10. doi: 10.1186/s12882-016-0222-x 26775026

43. Pham TAV. Validation of the salivary urea and creatinine tests as screening methods of chronic kidney disease in Vietnamese patients. Acta Odontol Scand. 2017;75: 551–556. doi: 10.1080/00016357.2017.1356467 28724318

44. Renda R. Can salivary creatinine and urea levels be used to diagnose chronic kidney disease in children as accurately as serum creatinine and urea levels? A case–control study. Ren Fail. 2017;39: 452–457. doi: 10.1080/0886022X.2017.1308256 28372505

45. Yajamanam N, Vinapamula K, Sivakumar V, Bitla A, Rao PVLNS. Utility of saliva as a sample to assess renal function and estimated glomerular filtration rate. Saudi J Kidney Dis Transplant. 2016;27: 312.

46. Delgado-Povedano MM, Calderón-Santiago M, Priego-Capote F, Luque de Castro MD. Study of sample preparation for quantitative analysis of amino acids in Human sweat by liquid chromatography-tandem mass spectrometry. Talanta. 2016;146: 310–317. doi: 10.1016/j.talanta.2015.07.066 26695269

47. Masoudi Rad H, Rabiei M, Sobhani A, Sadegh Khanjani M, Rahbar Taramsar M, Kazemnezhad Leili E. Free amino acids in stimulated and unstimulated whole saliva: advantages or disadvantages. J Oral Rehabil. 2014;41: 759–767. doi: 10.1111/joor.12197 24931136

48. Krause R, Knoll K, Henle T. Studies on the formation of furosine and pyridosine during acid hydrolysis of different Amadori products of lysine. Eur Food Res Technol. 2003;216: 277–283.

49. Henle T, Bachmann A. Synthesis of pyrraline reference material. Z Lebensm Unters Forsch. 1996;202: 72–74. 8717098

50. Delatour T, Fenaille F, Parisod V, Arce Vera F, Buetler T. Synthesis, tandem MS- and NMR-based characterization, and quantification of the carbon 13-labeled advanced glycation endproduct, 6-N-carboxymethyllysine. Amino Acids. 2006;30: 25–34. doi: 10.1007/s00726-005-0249-y 16193227

51. Hellwig M, Henle T. Baking, ageing, diabetes: a short history of the Maillard reaction. Angew Chem Int Ed Engl. 2014;53 10316–10329. doi: 10.1002/anie.201308808 25044982

52. Hellwig M, Rückriemen J, Sandner D, Henle T. Unique Pattern of Protein-Bound Maillard Reaction Products in Manuka (Leptospermum scoparium) Honey. J Agric Food Chem. 2017;65: 3532–3540. doi: 10.1021/acs.jafc.7b00797 28415841

53. Battistone GC, Burnett GW. The free amino acid composition of human saliva. Arch Oral Biol. 1961;3: 161–170. doi: 10.1016/0003-9969(61)90133-9 13966869

54. Maessen MFH, Schalkwijk CG, Verheggen RJHM, Aengevaeren VL, Hopman MTE, Eijsvogels TMH. A comparison of dicarbonyl stress and advanced glycation endproducts in lifelong endurance athletes vs. sedentary controls. J Sci Med Sport. Elsevier; 2017;20: 921–926.

55. van Waateringe RP, Mook-Kanamori MJ, Slagter SN, van der Klauw MM, van Vliet-Ostaptchouk J V., Graaff R, et al. The association between various smoking behaviors, cotinine biomarkers and skin autofluorescence, a marker for advanced glycation end product accumulation. PLoS One. 2017;12: e0179330. doi: 10.1371/journal.pone.0179330 28632785

56. Vining RF, McGinley RA. The measurement of hormones in saliva: Possibilities and pitfalls. J Steroid Biochem. 1987;27: 81–94. 3320544

57. Hoonhorst SJM, Lo Tam Loi AT, Pouwels SD, Faiz A, Telenga ED, van den Berge M, et al. Advanced glycation endproducts and their receptor in different body compartments in COPD. Respir Res. BioMed Central; 2016;17: 46.

58. van Eupen MGA, Schram MT, Colhoun HM, Scheijen JLJM, Stehouwer CDA, Schalkwijk CG. Plasma levels of advanced glycation endproducts are associated with type 1 diabetes and coronary artery calcification. Cardiovasc Diabetol. 2013;12: 149. doi: 10.1186/1475-2840-12-149 24134530

59. Okura T, Ueta E, Nakamura R, Fujioka Y, Sumi K, Matsumoto K, et al. High serum advanced glycation end products are associated with decreased insulin secretion in patients with type 2 diabetes: a brief report. J Diabetes Res. Hindawi; 2017;2017: 1–7.

60. Schwarzenbolz U, Hofmann T, Sparmann N, Henle T. Free Maillard Reaction Products in Milk Reflect Nutritional Intake of Glycated Proteins and Can Be Used to Distinguish “organic” and “conventionally” Produced Milk. J Agric Food Chem. 2016;64: 5071–5078. doi: 10.1021/acs.jafc.6b01375 27213835

61. Mark AB, Poulsen MW, Andersen S, Andersen JM, Bak MJ, Ritz C, et al. Consumption of a diet low in advanced glycation end products for 4 weeks improves insulin sensitivity in overweight women. Diabetes Care. 2014;37: 88–95. doi: 10.2337/dc13-0842 23959566

62. Macías-Cervantes MH, Rodríguez-Soto JMD, Uribarri J, Díaz-Cisneros FJ, Cai W, Garay-Sevilla ME. Effect of an advanced glycation end product-restricted diet and exercise on metabolic parameters in adult overweight men. Nutrition. 2015;31: 446–451. doi: 10.1016/j.nut.2014.10.004 25701333

63. Hanssen NMJ, Engelen L, Ferreira I, Scheijen JLJM, Huijberts MS, van Greevenbroek MMJ, et al. Plasma levels of advanced glycation endproducts Nε-(carboxymethyl)lysine, Nε-(carboxyethyl)lysine, and pentosidine are not independently associated with cardiovascular disease. J Clin Endocrinol Metab. 2013;98: E1369–E1373. doi: 10.1210/jc.2013-1068 23780372

64. Morzel M, Truntzer C, Neyraud E, Brignot H, Ducoroy P, Lucchi G, et al. Associations between food consumption patterns and saliva composition: Specificities of eating difficulties children. Physiol Behav. 2017;173: 116–123. doi: 10.1016/j.physbeh.2017.02.005 28185876

65. Walsh MC, Brennan L, Malthouse JPG, Roche HM, Gibney MJ. Effect of acute dietary standardization on the urinary, plasma, and salivary metabolomic profiles of healthy humans. Am J Clin Nutr. 2006;84: 531–539. doi: 10.1093/ajcn/84.3.531 16960166

66. Gopal P, Reynaert NL, Scheijen JLJM, Engelen L, Schalkwijk CG, Franssen FME, et al. Plasma advanced glycation end-products and skin autofluorescence are increased in COPD. Eur Respir J. 2014;43: 430–438. doi: 10.1183/09031936.00135312 23645408

67. Ahmed N, Babaei-Jadidi R, Howell SK, Beisswenger PJ, Thornalley PJ. Degradation products of proteins damaged by glycation, oxidation and nitration in clinical type 1 diabetes. Diabetologia. Springer-Verlag; 2005;48: 1590–1603.


Článek vyšel v časopise

PLOS One


2019 Číslo 9
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

Svět praktické medicíny 3/2024 (znalostní test z časopisu)
nový kurz

Kardiologické projevy hypereozinofilií
Autoři: prof. MUDr. Petr Němec, Ph.D.

Střevní příprava před kolonoskopií
Autoři: MUDr. Klára Kmochová, Ph.D.

Aktuální možnosti diagnostiky a léčby litiáz
Autoři: MUDr. Tomáš Ürge, PhD.

Závislosti moderní doby – digitální závislosti a hypnotika
Autoři: MUDr. Vladimír Kmoch

Všechny kurzy
Kurzy Podcasty Doporučená témata Časopisy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#