Petri net–based model of the human DNA base excision repair pathway
Autoři:
Marcin Radom aff001; Magdalena A. Machnicka aff003; Joanna Krwawicz aff005; Janusz M. Bujnicki aff003; Piotr Formanowicz aff001
Působiště autorů:
Institute of Computing Science, Poznan University of Technology, Poznań, Poland
aff001; Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
aff002; Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, Warsaw, Poland
aff003; Institute of Informatics, University of Warsaw, Warsaw, Poland
aff004; Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
aff005; Laboratory of Structural Biology, International Institute of Molecular and Cell Biology, Warsaw, Poland
aff006; Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
aff007
Vyšlo v časopise:
PLoS ONE 14(9)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0217913
Souhrn
Cellular DNA is daily exposed to several damaging agents causing a plethora of DNA lesions. As a first aid to restore DNA integrity, several enzymes got specialized in damage recognition and lesion removal during the process called base excision repair (BER). A large number of DNA damage types and several different readers of nucleic acids lesions during BER pathway as well as two sub-pathways were considered in the definition of a model using the Petri net framework. The intuitive graphical representation in combination with precise mathematical analysis methods are the strong advantages of the Petri net-based representation of biological processes and make Petri nets a promising approach for modeling and analysis of human BER. The reported results provide new information that will aid efforts to characterize in silico knockouts as well as help to predict the sensitivity of the cell with inactivated repair proteins to different types of DNA damage. The results can also help in identifying the by-passing pathways that may lead to lack of pronounced phenotypes associated with mutations in some of the proteins. This knowledge is very useful when DNA damage-inducing drugs are introduced for cancer therapy, and lack of DNA repair is desirable for tumor cell death.
Klíčová slova:
Biology and life sciences – Genetics – DNA – DNA damage – DNA cleavage – DNA repair – Base excision repair – DNA synthesis – Epigenetics – DNA modification – Gene expression – Biochemistry – Nucleic acids – Biochemical simulations – Cell biology – Chromosome biology – Chromatin – Chromatin modification – DNA methylation – Molecular biology – Molecular biology techniques – Molecular biology assays and analysis techniques – Ligation assay – Computational biology – Research and analysis methods – Chemical synthesis – Biosynthetic techniques – Nucleic acid synthesis
Zdroje
1. Koch I, Reisig W, Schreiber F. Modeling in systems biology: the Petri Net approach: Springer Science & Business Media; 2010.
2. Wang J, Pantopoulos K. Regulation of cellular iron metabolism. Biochemical Journal. 2011;434(3):365–81. doi: 10.1042/BJ20101825 21348856
3. Murata T. Petri nets: Properties, analysis and applications. Proceedings of the IEEE. 1989;77(4):541–80.
4. Petri CA. Kommunikation mit automaten. Institut für Instrumentelle Mathematik, Bonn. 1962.
5. Hofestädt R. A Petri net application to model metabolic processes. Systems Analysis Modelling Simulation. 1994;16(2):113–22.
6. Reddy VN, Mavrovouniotis ML, Liebman MN, editors. Petri net representations in metabolic pathways. ISMB: 0-929280-47-4; 1993:328–336. PubMed PMID: 584354; 1993.
7. Chen M, Hariharaputran S, Hofestädt R, Kormeier B, Spangardt S. Petri net models for the semi-automatic construction of large scale biological networks. Natural Computing. 2011;10(3):1077–97. doi: 10.1007/s11047-009-9151-y
8. Marwan W, Wagler A, Weismantel R. Petri nets as a framework for the reconstruction and analysis of signal transduction pathways and regulatory networks. Natural Computing. 2011;10(2):639–54.
9. Milanowska K, Krwawicz J, Papaj G, Kosinski J, Poleszak K, Lesiak J, et al. REPAIRtoire—a database of DNA repair pathways. Nucleic Acids Res. 2011;39(Database issue):D788–92. doi: 10.1093/nar/gkq1087 21051355; PubMed Central PMCID: PMCPMC3013684.
10. Kuchta K, Barszcz D, Grzesiuk E, Pomorski P, Krwawicz J. DNAtraffic—a new database for systems biology of DNA dynamics during the cell life. Nucleic Acids Res. 2012;40(Database issue):D1235–40. doi: 10.1093/nar/gkr962 22110027; PubMed Central PMCID: PMC3245060.
11. Dolan D, Nelson G, Zupanic A, Smith G, Shanley D. Systems modelling of NHEJ reveals the importance of redox regulation of Ku70/80 in the dynamics of dna damage foci. PLoS One. 2013;8(2):e55190. doi: 10.1371/journal.pone.0055190 23457464; PubMed Central PMCID: PMC3566652.
12. Sokhansanj BA, Wilson DM 3rd. Estimating the effect of human base excision repair protein variants on the repair of oxidative DNA base damage. Cancer Epidemiol Biomarkers Prev. 2006;15(5):1000–8. doi: 10.1158/1055-9965.EPI-05-0817 16702383.
13. Sokhansanj BA, Rodrigue GR, Fitch JP, Wilson DM 3rd. A quantitative model of human DNA base excision repair. I. Mechanistic insights. Nucleic Acids Res. 2002;30(8):1817–25. doi: 10.1093/nar/30.8.1817 11937636; PubMed Central PMCID: PMC113225.
14. Rahmanian S, Taleei R, Nikjoo H. Radiation induced base excision repair (BER): a mechanistic mathematical approach. DNA Repair (Amst). 2014;22:89–103. doi: 10.1016/j.dnarep.2014.07.011 25117268.
15. Semenenko VA, Stewart RD. A fast Monte Carlo algorithm to simulate the spectrum of DNA damages formed by ionizing radiation. Radiat Res. 2004;161(4):451–7. 15038766.
16. Semenenko VA, Stewart RD, Ackerman EJ. Monte Carlo simulation of base and nucleotide excision repair of clustered DNA damage sites. I. Model properties and predicted trends. Radiat Res. 2005;164(2):180–93. 16038589.
17. Formanowicz D, Kozak A, Głowacki T, Radom M, Formanowicz P. Hemojuvelin–hepcidin axis modeled and analyzed using Petri nets. Journal of Biomedical Informatics. 2013;46(6):1030–43. doi: 10.1016/j.jbi.2013.07.013 23954231
18. Heiner M. Understanding Network Behavior by Structured Representations of Transition Invariants. In: Condon A, Harel D, Kok JN, Salomaa A, Winfree E, editors. Algorithmic Bioprocesses. Berlin, Heidelberg: Springer Berlin Heidelberg; 2009. p. 367–89.
19. Koch I, Ackermann J. On functional module detection in metabolic networks. Metabolites. 2013;3(3):673–700. doi: 10.3390/metabo3030673 24958145
20. Koch I, Heiner M. Petri nets In: Analysis of Biological Networks. In: Pan Y, Zomaya AY, editors. Series in Bioinformatics: Wiley Book; 2007. p. 139–179, doi: 10.1002/9780470253489, Print ISBN:9780470041444, chapter 7.
21. Sackmann A, Heiner M, Koch I. Application of Petri net based analysis techniques to signal transduction pathways. BMC bioinformatics. 2006;7(1):482.
22. Milacic M, Haw R, Rothfels K, Wu G, Croft D, Hermjakob H, et al. Annotating cancer variants and anti-cancer therapeutics in reactome. Cancers (Basel). 2012;4(4):1180–211. doi: 10.3390/cancers4041180 24213504; PubMed Central PMCID: PMC3712731.
23. Orlic-Milacic M. Base Excision Repair. Reactome—a curated knowledgebase of biological pathways. 2015;52. doi: 10.1111/j.1538-7836.2012.04930.x PMID: 22985186, PMCID: PMC3578965.
24. Almeida KH, Sobol RW. A unified view of base excision repair: lesion-dependent protein complexes regulated by post-translational modification. DNA Repair (Amst). 2007;6(6):695–711. doi: 10.1016/j.dnarep.2007.01.009 17337257; PubMed Central PMCID: PMC1995033.
25. Hill JW, Hazra TK, Izumi T, Mitra S. Stimulation of human 8-oxoguanine-DNA glycosylase by AP-endonuclease: potential coordination of the initial steps in base excision repair. Nucleic Acids Res. 2001;29(2):430–8. doi: 10.1093/nar/29.2.430 11139613; PubMed Central PMCID: PMC29662.
26. Vidal AE, Hickson ID, Boiteux S, Radicella JP. Mechanism of stimulation of the DNA glycosylase activity of hOGG1 by the major human AP endonuclease: bypass of the AP lyase activity step. Nucleic Acids Res. 2001;29(6):1285–92. doi: 10.1093/nar/29.6.1285 11238994; PubMed Central PMCID: PMC29755.
27. Mokkapati SK, Wiederhold L, Hazra TK, Mitra S. Stimulation of DNA glycosylase activity of OGG1 by NEIL1: functional collaboration between two human DNA glycosylases. Biochemistry. 2004;43(36):11596–604. doi: 10.1021/bi049097i 15350146.
28. Wiederhold L, Leppard JB, Kedar P, Karimi-Busheri F, Rasouli-Nia A, Weinfeld M, et al. AP endonuclease-independent DNA base excision repair in human cells. Mol Cell. 2004;15(2):209–20. doi: 10.1016/j.molcel.2004.06.003 15260972.
29. Marenstein DR, Chan MK, Altamirano A, Basu AK, Boorstein RJ, Cunningham RP, et al. Substrate specificity of human endonuclease III (hNTH1). Effect of human APE1 on hNTH1 activity. J Biol Chem. 2003;278(11):9005–12. doi: 10.1074/jbc.M212168200 12519758.
30. Klungland A, Lindahl T. Second pathway for completion of human DNA base excision-repair: reconstitution with purified proteins and requirement for DNase IV (FEN1). EMBO J. 1997;16(11):3341–8. doi: 10.1093/emboj/16.11.3341 9214649; PubMed Central PMCID: PMC1169950.
31. Sukhanova M, Khodyreva S, Lavrik O. Poly(ADP-ribose) polymerase 1 regulates activity of DNA polymerase beta in long patch base excision repair. Mutat Res. 2010;685(1–2):80–9. doi: 10.1016/j.mrfmmm.2009.08.009 19703477.
32. Das A, Wiederhold L, Leppard JB, Kedar P, Prasad R, Wang H, et al. NEIL2-initiated, APE-independent repair of oxidized bases in DNA: Evidence for a repair complex in human cells. DNA Repair (Amst). 2006;5(12):1439–48. doi: 10.1016/j.dnarep.2006.07.003 16982218; PubMed Central PMCID: PMC2805168.
33. Krokeide SZ, Laerdahl JK, Salah M, Luna L, Cederkvist FH, Fleming AM, et al. Human NEIL3 is mainly a monofunctional DNA glycosylase removing spiroimindiohydantoin and guanidinohydantoin. DNA Repair (Amst). 2013;12(12):1159–64. doi: 10.1016/j.dnarep.2013.04.026 23755964; PubMed Central PMCID: PMC3840045.
34. Radom M, Rybarczyk A, Szawulak B, Andrzejewski H, Chabelski P, Kozak A, et al. Holmes: a graphical tool for development, simulation and analysis of Petri net based models of complex biological systems. Bioinformatics. 2017;33(23):3822–3. doi: 10.1093/bioinformatics/btx492 28961696.
35. Hu J, de Souza-Pinto NC, Haraguchi K, Hogue BA, Jaruga P, Greenberg MM, et al. Repair of formamidopyrimidines in DNA involves different glycosylases: role of the OGG1, NTH1, and NEIL1 enzymes. J Biol Chem. 2005;280(49):40544–51. doi: 10.1074/jbc.M508772200 16221681.
36. Jacobs AL, Schar P. DNA glycosylases: in DNA repair and beyond. Chromosoma. 2012;121(1):1–20. doi: 10.1007/s00412-011-0347-4 22048164; PubMed Central PMCID: PMC3260424.
37. Kim YJ, Wilson DM 3rd. Overview of base excision repair biochemistry. Curr Mol Pharmacol. 2012;5(1):3–13. 22122461; PubMed Central PMCID: PMC3459583.
38. Ocampo-Hafalla MT, Altamirano A, Basu AK, Chan MK, Ocampo JE, Cummings A Jr., et al. Repair of thymine glycol by hNth1 and hNeil1 is modulated by base pairing and cis-trans epimerization. DNA Repair (Amst). 2006;5(4):444–54. doi: 10.1016/j.dnarep.2005.12.004 16446124.
39. Bjelland S, Seeberg E. Mutagenicity, toxicity and repair of DNA base damage induced by oxidation. Mutat Res. 2003;531(1–2):37–80. 14637246.
40. Masaoka A, Matsubara M, Hasegawa R, Tanaka T, Kurisu S, Terato H, et al. Mammalian 5-formyluracil-DNA glycosylase. 2. Role of SMUG1 uracil-DNA glycosylase in repair of 5-formyluracil and other oxidized and deaminated base lesions. Biochemistry. 2003;42(17):5003–12. doi: 10.1021/bi0273213 12718543.
41. Shinmura K, Kato H, Goto M, Tao H, Inoue Y, Nakamura S, et al. Mutation Spectrum Induced by 8-Bromoguanine, a Base Damaged by Reactive Brominating Species, in Human Cells. Oxid Med Cell Longev. 2017;2017:7308501. doi: 10.1155/2017/7308501 29098062; PubMed Central PMCID: PMC5643121.
42. Liu P, Burdzy A, Sowers LC. Repair of the mutagenic DNA oxidation product, 5-formyluracil. DNA Repair (Amst). 2003;2(2):199–210. 12531390.
43. Yoon JH, Iwai S, O'Connor TR, Pfeifer GP. Human thymine DNA glycosylase (TDG) and methyl-CpG-binding protein 4 (MBD4) excise thymine glycol (Tg) from a Tg:G mispair. Nucleic Acids Res. 2003;31(18):5399–404. doi: 10.1093/nar/gkg730 12954776; PubMed Central PMCID: PMC203315.
44. Brooks SC, Adhikary S, Rubinson EH, Eichman BF. Recent advances in the structural mechanisms of DNA glycosylases. Biochim Biophys Acta. 2013;1834(1):247–71. doi: 10.1016/j.bbapap.2012.10.005 23076011; PubMed Central PMCID: PMC3530658.
45. Lee CY, Delaney JC, Kartalou M, Lingaraju GM, Maor-Shoshani A, Essigmann JM, et al. Recognition and processing of a new repertoire of DNA substrates by human 3-methyladenine DNA glycosylase (AAG). Biochemistry. 2009;48(9):1850–61. doi: 10.1021/bi8018898 19219989; PubMed Central PMCID: PMC2883313.
46. O'Brien PJ, Ellenberger T. Dissecting the broad substrate specificity of human 3-methyladenine-DNA glycosylase. J Biol Chem. 2004;279(11):9750–7. doi: 10.1074/jbc.M312232200 14688248.
47. Saparbaev M, Langouet S, Privezentzev CV, Guengerich FP, Cai H, Elder RH, et al. 1,N(2)-ethenoguanine, a mutagenic DNA adduct, is a primary substrate of Escherichia coli mismatch-specific uracil-DNA glycosylase and human alkylpurine-DNA-N-glycosylase. J Biol Chem. 2002;277(30):26987–93. doi: 10.1074/jbc.M111100200 12016206.
48. Wyatt MD, Allan JM, Lau AY, Ellenberger TE, Samson LD. 3-methyladenine DNA glycosylases: structure, function, and biological importance. Bioessays. 1999;21(8):668–76. doi: 10.1002/(SICI)1521-1878(199908)21:8<668::AID-BIES6>3.0.CO;2-D 10440863.
49. Dou H, Mitra S, Hazra TK. Repair of oxidized bases in DNA bubble structures by human DNA glycosylases NEIL1 and NEIL2. J Biol Chem. 2003;278(50):49679–84. doi: 10.1074/jbc.M308658200 14522990.
50. Grin IR, Dianov GL, Zharkov DO. The role of mammalian NEIL1 protein in the repair of 8-oxo-7,8-dihydroadenine in DNA. FEBS Lett. 2010;584(8):1553–7. doi: 10.1016/j.febslet.2010.03.009 20214901; PubMed Central PMCID: PMC3004018.
51. Aamann MD, Hvitby C, Popuri V, Muftuoglu M, Lemminger L, Skeby CK, et al. Cockayne Syndrome group B protein stimulates NEIL2 DNA glycosylase activity. Mech Ageing Dev. 2014;135:1–14. doi: 10.1016/j.mad.2013.12.008 24406253; PubMed Central PMCID: PMC3954709.
52. Liu M, Bandaru V, Holmes A, Averill AM, Cannan W, Wallace SS. Expression and purification of active mouse and human NEIL3 proteins. Protein Expr Purif. 2012;84(1):130–9. doi: 10.1016/j.pep.2012.04.022 22569481; PubMed Central PMCID: PMC3378769.
53. Dherin C, Radicella JP, Dizdaroglu M, Boiteux S. Excision of oxidatively damaged DNA bases by the human alpha-hOgg1 protein and the polymorphic alpha-hOgg1(Ser326Cys) protein which is frequently found in human populations. Nucleic Acids Res. 1999;27(20):4001–7. doi: 10.1093/nar/27.20.4001 10497264; PubMed Central PMCID: PMC148667.
54. Fortini P, Pascucci B, Parlanti E, D'Errico M, Simonelli V, Dogliotti E. 8-Oxoguanine DNA damage: at the crossroad of alternative repair pathways. Mutat Res. 2003;531(1–2):127–39. 14637250.
55. Roldan-Arjona T, Wei YF, Carter KC, Klungland A, Anselmino C, Wang RP, et al. Molecular cloning and functional expression of a human cDNA encoding the antimutator enzyme 8-hydroxyguanine-DNA glycosylase. Proc Natl Acad Sci U S A. 1997;94(15):8016–20. doi: 10.1073/pnas.94.15.8016 9223306; PubMed Central PMCID: PMC21548.
56. Bennett MT, Rodgers MT, Hebert AS, Ruslander LE, Eisele L, Drohat AC. Specificity of human thymine DNA glycosylase depends on N-glycosidic bond stability. J Am Chem Soc. 2006;128(38):12510–9. doi: 10.1021/ja0634829 16984202; PubMed Central PMCID: PMC2809119.
57. Bochtler M, Kolano A, Xu GL. DNA demethylation pathways: Additional players and regulators. Bioessays. 2017;39(1):1–13. doi: 10.1002/bies.201600178 27859411.
58. Goto M, Shinmura K, Matsushima Y, Ishino K, Yamada H, Totsuka Y, et al. Human DNA glycosylase enzyme TDG repairs thymine mispaired with exocyclic etheno-DNA adducts. Free Radic Biol Med. 2014;76:136–46. doi: 10.1016/j.freeradbiomed.2014.07.044 25151120.
59. Hashimoto H, Hong S, Bhagwat AS, Zhang X, Cheng X. Excision of 5-hydroxymethyluracil and 5-carboxylcytosine by the thymine DNA glycosylase domain: its structural basis and implications for active DNA demethylation. Nucleic Acids Res. 2012;40(20):10203–14. doi: 10.1093/nar/gks845 22962365; PubMed Central PMCID: PMC3488261.
60. Maiti A, Morgan MT, Drohat AC. Role of two strictly conserved residues in nucleotide flipping and N-glycosylic bond cleavage by human thymine DNA glycosylase. J Biol Chem. 2009;284(52):36680–8. doi: 10.1074/jbc.M109.062356 19880517; PubMed Central PMCID: PMC2794782.
61. Sibghat U, Gallinari P, Xu YZ, Goodman MF, Bloom LB, Jiricny J, et al. Base analog and neighboring base effects on substrate specificity of recombinant human G:T mismatch-specific thymine DNA-glycosylase. Biochemistry. 1996;35(39):12926–32. doi: 10.1021/bi961022u 8841138.
62. Slyvka A, Mierzejewska K, Bochtler M. Nei-like 1 (NEIL1) excises 5-carboxylcytosine directly and stimulates TDG-mediated 5-formyl and 5-carboxylcytosine excision. Sci Rep. 2017;7(1):9001. doi: 10.1038/s41598-017-07458-4 28827588; PubMed Central PMCID: PMC5566547.
63. Talhaoui I, Couve S, Ishchenko AA, Kunz C, Schar P, Saparbaev M. 7,8-Dihydro-8-oxoadenine, a highly mutagenic adduct, is repaired by Escherichia coli and human mismatch-specific uracil/thymine-DNA glycosylases. Nucleic Acids Res. 2013;41(2):912–23. doi: 10.1093/nar/gks1149 23209024; PubMed Central PMCID: PMC3553953.
64. Krokan HE, Nilsen H, Skorpen F, Otterlei M, Slupphaug G. Base excision repair of DNA in mammalian cells. FEBS Lett. 2000;476(1–2):73–7. 10878254.
65. Krwawicz J, Arczewska KD, Speina E, Maciejewska A, Grzesiuk E. Bacterial DNA repair genes and their eukaryotic homologues: 1. Mutations in genes involved in base excision repair (BER) and DNA-end processors and their implication in mutagenesis and human disease. Acta Biochim Pol. 2007;54(3):413–34. 17893748.
66. Burgers PM. Saccharomyces cerevisiae replication factor C. II. Formation and activity of complexes with the proliferating cell nuclear antigen and with DNA polymerases delta and epsilon. J Biol Chem. 1991;266(33):22698–706. 1682322.
67. Jain AK, Dubes RC. Algorithms for clustering data. Prentice-Hall, Inc.; 1988.
68. Kaufman L, Rousseeuw PJ. Finding groups in data: an introduction to cluster analysis: John Wiley & Sons; 2009.
69. Caliński T, Harabasz J. A dendrite method for cluster analysis. Communications in Statistics-Simulation and Computation. 1974;3(1):1–27.
70. D'Errico M, Parlanti E, Pascucci B, Fortini P, Baccarini S, Simonelli V, et al. Single nucleotide polymorphisms in DNA glycosylases: From function to disease. Free Radic Biol Med. 2017;107:278–91. doi: 10.1016/j.freeradbiomed.2016.12.002 27932076.
71. Fleming AM, Burrows CJ. Formation and processing of DNA damage substrates for the hNEIL enzymes. Free Radic Biol Med. 2017;107:35–52. doi: 10.1016/j.freeradbiomed.2016.11.030 27880870; PubMed Central PMCID: PMC5438787.
72. Meas R, Smerdon MJ. Nucleosomes determine their own patch size in base excision repair. Sci Rep. 2016;6:27122. doi: 10.1038/srep27122 27265863; PubMed Central PMCID: PMC4893620.
73. Zhou T, Pan F, Cao Y, Han Y, Zhao J, Sun H, et al. R152C DNA Pol beta mutation impairs base excision repair and induces cellular transformation. Oncotarget. 2016;7(6):6902–15. doi: 10.18632/oncotarget.6849 26760506; PubMed Central PMCID: PMC4872757.
74. Sugo N, Aratani Y, Nagashima Y, Kubota Y, Koyama H. Neonatal lethality with abnormal neurogenesis in mice deficient in DNA polymerase beta. EMBO J. 2000;19(6):1397–404. doi: 10.1093/emboj/19.6.1397 10716939; PubMed Central PMCID: PMC305680.
75. Pan F, Zhao J, Zhou T, Kuang Z, Dai H, Wu H, et al. Mutation of DNA Polymerase beta R137Q Results in Retarded Embryo Development Due to Impaired DNA Base Excision Repair in Mice. Sci Rep. 2016;6:28614. doi: 10.1038/srep28614 27358192; PubMed Central PMCID: PMC4928080.
76. Senejani AG, Liu Y, Kidane D, Maher SE, Zeiss CJ, Park HJ, et al. Mutation of POLB causes lupus in mice. Cell Rep. 2014;6(1):1–8. doi: 10.1016/j.celrep.2013.12.017 24388753; PubMed Central PMCID: PMC3916967.
77. Balakrishnan L, Bambara RA. Flap endonuclease 1. Annu Rev Biochem. 2013;82:119–38. doi: 10.1146/annurev-biochem-072511-122603 23451868; PubMed Central PMCID: PMC3679248.
78. Sato M, Girard L, Sekine I, Sunaga N, Ramirez RD, Kamibayashi C, et al. Increased expression and no mutation of the Flap endonuclease (FEN1) gene in human lung cancer. Oncogene. 2003;22(46):7243–6. doi: 10.1038/sj.onc.1206977 14562054.
79. Larsen E, Gran C, Saether BE, Seeberg E, Klungland A. Proliferation failure and gamma radiation sensitivity of Fen1 null mutant mice at the blastocyst stage. Mol Cell Biol. 2003;23(15):5346–53. doi: 10.1128/MCB.23.15.5346-5353.2003 12861020; PubMed Central PMCID: PMC165721.
80. Sun H, He L, Wu H, Pan F, Wu X, Zhao J, et al. The FEN1 L209P mutation interferes with long-patch base excision repair and induces cellular transformation. Oncogene. 2017;36(2):194–207. doi: 10.1038/onc.2016.188 27270424; PubMed Central PMCID: PMC5140775.
81. Lindahl T, Nyberg B. Rate of depurination of native deoxyribonucleic acid. Biochemistry. 1972;11(19):3610–8. 4626532.
82. Hadi MZ, Ginalski K, Nguyen LH, Wilson DM 3rd. Determinants in nuclease specificity of Ape1 and Ape2, human homologues of Escherichia coli exonuclease III. J Mol Biol. 2002;316(3):853–66. doi: 10.1006/jmbi.2001.5382 11866537.
83. Tsutakawa SE, Lafrance-Vanasse J, Tainer JA. The cutting edges in DNA repair, licensing, and fidelity: DNA and RNA repair nucleases sculpt DNA to measure twice, cut once. DNA Repair (Amst). 2014;19:95–107. doi: 10.1016/j.dnarep.2014.03.022 24754999; PubMed Central PMCID: PMC4051888.
84. Izumi T, Brown DB, Naidu CV, Bhakat KK, Macinnes MA, Saito H, et al. Two essential but distinct functions of the mammalian abasic endonuclease. Proc Natl Acad Sci U S A. 2005;102(16):5739–43. doi: 10.1073/pnas.0500986102 15824325; PubMed Central PMCID: PMC556297.
85. Xanthoudakis S, Smeyne RJ, Wallace JD, Curran T. The redox/DNA repair protein, Ref-1, is essential for early embryonic development in mice. Proc Natl Acad Sci U S A. 1996;93(17):8919–23. doi: 10.1073/pnas.93.17.8919 8799128; PubMed Central PMCID: PMC38569.
86. Meira LB, Devaraj S, Kisby GE, Burns DK, Daniel RL, Hammer RE, et al. Heterozygosity for the mouse Apex gene results in phenotypes associated with oxidative stress. Cancer Res. 2001;61(14):5552–7. 11454706.
87. Hadi MZ, Coleman MA, Fidelis K, Mohrenweiser HW, Wilson DM 3rd. Functional characterization of Ape1 variants identified in the human population. Nucleic Acids Res. 2000;28(20):3871–9. doi: 10.1093/nar/28.20.3871 11024165; PubMed Central PMCID: PMC110798.
88. Kisby GE, Milne J, Sweatt C. Evidence of reduced DNA repair in amyotrophic lateral sclerosis brain tissue. Neuroreport. 1997;8(6):1337–40. 9172131.
89. Pieretti M, Khattar NH, Smith SA. Common polymorphisms and somatic mutations in human base excision repair genes in ovarian and endometrial cancers. Mutat Res. 2001;432(3–4):53–9. 11465542.
90. Aceytuno RD, Piett CG, Havali-Shahriari Z, Edwards RA, Rey M, Ye R, et al. Structural and functional characterization of the PNKP-XRCC4-LigIV DNA repair complex. Nucleic Acids Res. 2017;45(10):6238–51. doi: 10.1093/nar/gkx275 28453785; PubMed Central PMCID: PMC5449630.
91. Reynolds JJ, Walker AK, Gilmore EC, Walsh CA, Caldecott KW. Impact of PNKP mutations associated with microcephaly, seizures and developmental delay on enzyme activity and DNA strand break repair. Nucleic Acids Res. 2012;40(14):6608–19. doi: 10.1093/nar/gks318 22508754; PubMed Central PMCID: PMC3413127.
92. Saito Y, Ono T, Takeda N, Nohmi T, Seki M, Enomoto T, et al. Embryonic lethality in mice lacking mismatch-specific thymine DNA glycosylase is partially prevented by DOPS, a precursor of noradrenaline. Tohoku J Exp Med. 2012;226(1):75–83. 22200605.
93. Cortazar D, Kunz C, Selfridge J, Lettieri T, Saito Y, MacDougall E, et al. Embryonic lethal phenotype reveals a function of TDG in maintaining epigenetic stability. Nature. 2011;470(7334):419–23. doi: 10.1038/nature09672 21278727.
94. Fleming AM, Zhu J, Ding Y, Burrows CJ. 8-Oxo-7,8-dihydroguanine in the Context of a Gene Promoter G-Quadruplex Is an On-Off Switch for Transcription. ACS Chem Biol. 2017;12(9):2417–26. doi: 10.1021/acschembio.7b00636 28829124; PubMed Central PMCID: PMC5604463.
95. Moore SP, Toomire KJ, Strauss PR. DNA modifications repaired by base excision repair are epigenetic. DNA Repair (Amst). 2013;12(12):1152–8. doi: 10.1016/j.dnarep.2013.10.002 24216087.
Článek vyšel v časopise
PLOS One
2019 Číslo 9
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Je libo čepici místo mozkového implantátu?
- Pomůže v budoucnu s triáží na pohotovostech umělá inteligence?
- AI může chirurgům poskytnout cenná data i zpětnou vazbu v reálném čase
- Nová metoda odlišení nádorové tkáně může zpřesnit resekci glioblastomů
Nejčtenější v tomto čísle
- Graviola (Annona muricata) attenuates behavioural alterations and testicular oxidative stress induced by streptozotocin in diabetic rats
- CH(II), a cerebroprotein hydrolysate, exhibits potential neuro-protective effect on Alzheimer’s disease
- Comparison between Aptima Assays (Hologic) and the Allplex STI Essential Assay (Seegene) for the diagnosis of Sexually transmitted infections
- Assessment of glucose-6-phosphate dehydrogenase activity using CareStart G6PD rapid diagnostic test and associated genetic variants in Plasmodium vivax malaria endemic setting in Mauritania