Results of scoping review do not support mild traumatic brain injury being associated with a high incidence of chronic cognitive impairment: Commentary on McInnes et al. 2017
Autoři:
Grant L. Iverson aff001; Justin E. Karr aff005; Andrew J. Gardner aff006; Noah D. Silverberg aff007; Douglas P. Terry aff001
Působiště autorů:
Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, Massachusetts, United States of America
aff001; Spaulding Rehabilitation Hospital and Spaulding Research Institute, Charlestown, Massachusetts, United States of America
aff002; MassGeneral Hospital Children Sports Concussion Program, Boston, Massachusetts, United States of America
aff003; Home Base, A Red Sox Foundation and Massachusetts General Hospital Program, Charlestown, Massachusetts, United States of America
aff004; Department of Psychology, University of Victoria, Victoria, British Columbia, Canada
aff005; Hunter New England Local Health District Sports Concussion Program and Centre for Stroke and Brain Injury, School of Medicine and Public Health, University of Newcastle, Newcastle, New South Wales, Australia
aff006; Division of Physical Medicine & Rehabilitation, University of British Columbia, Vancouver, British Columbia, Canada
aff007; Rehabilitation Research Program, Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada
aff008
Vyšlo v časopise:
PLoS ONE 14(9)
Kategorie:
Formal Comment
doi:
https://doi.org/10.1371/journal.pone.0218997
Souhrn
A recently published review of 45 studies concluded that approximately half of individuals who sustain a single mild traumatic brain injury (MTBI) experience long-term cognitive impairment (McInnes et al. Mild Traumatic Brain Injury (mTBI) and chronic cognitive impairment: A scoping review. PLoS ONE 2017;12:e0174847). Stratified by age, they reported that 50% of children and 58% of adults showed some form of cognitive impairment. We contend that the McInnes et al. review used a definition of “cognitive impairment” that was idiosyncratic, not applicable to individual patients or subjects, inconsistent with how cognitive impairment is defined in clinical practice and research, and resulted in a large number of false positive cases of cognitive impairment. For example, if a study reported a statistically significant difference on a single cognitive test, the authors concluded that every subject with a MTBI in that study was cognitively impaired–an approach that cannot be justified statistically or psychometrically. The authors concluded that impairment was present in various cognitive domains, such as attention, memory, and executive functioning, but they did not analyze or report the results from any of these specific cognitive domains. Moreover, their analyses and conclusions regarding many published studies contradicted the interpretations provided by the original authors of those studies. We re-reviewed all 45 studies and extracted the main conclusions from each. We conclude that a single MTBI is not associated with a high incidence of chronic cognitive impairment.
Klíčová slova:
Biology and life sciences – Neuroscience – Cognitive science – Cognitive neuroscience – Cognitive psychology – Cognition – Memory – Learning and memory – Neuropsychology – Psychology – Medicine and health sciences – Neurology – Cognitive neurology – Cognitive impairment – Critical care and emergency medicine – Trauma medicine – Traumatic injury – Head injury – Social sciences – Research and analysis methods – Research assessment – Systematic reviews
Zdroje
1. McInnes K, Friesen CL, MacKenzie DE, Westwood DA, Boe SG. Mild Traumatic Brain Injury (mTBI) and chronic cognitive impairment: A scoping review. PLoS One. 2017;12(4):e0174847. doi: 10.1371/journal.pone.0174847 28399158; PubMed Central PMCID: PMC5388340.
2. Rohling ML, Binder LM, Demakis GJ, Larrabee GJ, Ploetz DM, Langhinrichsen-Rohling J. A meta-analysis of neuropsychological outcome after mild traumatic brain injury: re-analyses and reconsiderations of Binder et al. (1997), Frencham et al. (2005), and Pertab et al. (2009). The Clinical Neuropsychologist. 2011;25(4):608–23. Epub 2011/04/23. doi: 10.1080/13854046.2011.565076 21512956.
3. Belanger HG, Spiegel E, Vanderploeg RD. Neuropsychological performance following a history of multiple self-reported concussions: A meta-analysis. J Int Neuropsychol Soc. 2010;16(2):262–7. doi: 10.1017/S1355617709991287 20003581.
4. Belanger HG, Curtiss G, Demery JA, Lebowitz BK, Vanderploeg RD. Factors moderating neuropsychological outcomes following mild traumatic brain injury: a meta-analysis. J Int Neuropsychol Soc. 2005;11(3):215–27. doi: 10.1017/S1355617705050277 15892898.
5. Belanger HG, Vanderploeg RD. The neuropsychological impact of sports-related concussion: A meta-analysis. Journal of the International Neuropsychological Society. 2005;11(4):345–57. 16209414
6. Binder LM, Rohling ML, Larrabee J. A review of mild head trauma. Part I: Meta-analytic review of neuropsychological studies. J Clin Exp Neuropsychol. 1997;19(3):421–31. doi: 10.1080/01688639708403870 9268816.
7. Broglio SP, Puetz TW. The effect of sport concussion on neurocognitive function, self-report symptoms and postural control: a meta-analysis. Sports Med. 2008;38(1):53–67. doi: 10.2165/00007256-200838010-00005 18081367.
8. Dougan BK, Horswill MS, Geffen GM. Athletes' age, sex, and years of education moderate the acute neuropsychological impact of sports-related concussion: a meta-analysis. J Int Neuropsychol Soc. 2014;20(1):64–80. Epub 2013/02/05. doi: 10.1017/S1355617712001464 23375058.
9. Dougan BK, Horswill MS, Geffen GM. Do injury characteristics predict the severity of acute neuropsychological deficits following sports-related concussion? A meta-analysis. J Int Neuropsychol Soc. 2014;20(1):81–7. doi: 10.1017/S1355617713001288 24331116.
10. Frencham KA, Fox AM, Maybery MT. Neuropsychological studies of mild traumatic brain injury: a meta-analytic review of research since 1995. Journal of Clinical and Experimental Neuropsychology. 2005;27(3):334–51. Epub 2005/06/23. doi: 10.1080/13803390490520328 15969356.
11. Karr JE, Areshenkoff CN, Duggan EC, Garcia-Barrera MA. Blast-related mild traumatic brain injury: a Bayesian random-effects meta-analysis on the cognitive outcomes of concussion among military personnel. Neuropsychol Rev. 2014;24(4):428–44. doi: 10.1007/s11065-014-9271-8 25253505.
12. Karr JE, Areshenkoff CN, Garcia-Barrera MA. The neuropsychological outcomes of concussion: a systematic review of meta-analyses on the cognitive sequelae of mild traumatic brain injury. Neuropsychology. 2014;28(3):321–36. Epub 2013/11/14. doi: 10.1037/neu0000037 24219611.
13. Pertab JL, James KM, Bigler ED. Limitations of mild traumatic brain injury meta-analyses. Brain Injury. 2009;23(6):498–508. Epub 2009/06/02. doi: 10.1080/02699050902927984 19484623.
14. Schretlen DJ, Shapiro AM. A quantitative review of the effects of traumatic brain injury on cognitive functioning. Int Rev Psychiatry. 2003;15(4):341–9. doi: 10.1080/09540260310001606728 15276955.
15. Zakzanis KK, Leach L, Kaplan E. Mild traumatic brain injury. In: Zakzanis KK, Leach L, Kaplan E, editors. Neuropsychological differential diagnosis Lisse, Netherlands: Swets & Zeitlinger; 1999. p. 163–71.
16. Pham MT, Rajic A, Greig JD, Sargeant JM, Papadopoulos A, McEwen SA. A scoping review of scoping reviews: advancing the approach and enhancing the consistency. Res Synth Methods. 2014;5(4):371–85. doi: 10.1002/jrsm.1123 26052958; PubMed Central PMCID: PMC4491356.
17. Colquhoun HL, Levac D, O'Brien KK, Straus S, Tricco AC, Perrier L, et al. Scoping reviews: time for clarity in definition, methods, and reporting. J Clin Epidemiol. 2014;67(12):1291–4. doi: 10.1016/j.jclinepi.2014.03.013 25034198.
18. Arksey H, O'Malley L. Scoping studies: towards a methodological framework. International journal of social research methodology. 2005;8(1):19–32.
19. Peters MD, Godfrey CM, Khalil H, McInerney P, Parker D, Soares CB. Guidance for conducting systematic scoping reviews. Int J Evid Based Healthc. 2015;13(3):141–6. doi: 10.1097/XEB.0000000000000050 26134548.
20. Levac D, Colquhoun H, O'Brien KK. Scoping studies: advancing the methodology. Implement Sci. 2010;5:69. doi: 10.1186/1748-5908-5-69 20854677; PubMed Central PMCID: PMC2954944.
21. Shea BJ, Reeves BC, Wells G, Thuku M, Hamel C, Moran J, et al. AMSTAR 2: a critical appraisal tool for systematic reviews that include randomised or non-randomised studies of healthcare interventions, or both. BMJ. 2017;358:j4008. doi: 10.1136/bmj.j4008 28935701; PubMed Central PMCID: PMC5833365 at http://www.icmje.org/coi_disclosure.pdf and declare: no support from any organisation for the submitted work; no financial relationships with any organisations that might have an interest in the submitted work in the previous three years, no other relationships or activities that could appear to have influenced the submitted work.
22. Su SH, Xu W, Li M, Zhang L, Wu YF, Yu F, et al. Elevated C-reactive protein levels may be a predictor of persistent unfavourable symptoms in patients with mild traumatic brain injury: a preliminary study. Brain Behav Immun. 2014;38:111–7. doi: 10.1016/j.bbi.2014.01.009 24456846.
23. Rieger BP, Lewandowski LJ, Callahan JM, Spenceley L, Truckenmiller A, Gathje R, et al. A prospective study of symptoms and neurocognitive outcomes in youth with concussion vs orthopaedic injuries. Brain Inj. 2013;27(2):169–78. doi: 10.3109/02699052.2012.729290 23384214.
24. de Boussard CN, Lundin A, Karlstedt D, Edman G, Bartfai A, Borg J. S100 and cognitive impairment after mild traumatic brain injury. J Rehabil Med. 2005;37(1):53–7. Epub 2005/03/25. AL2LTNRXDRBN7LAP [pii] doi: 10.1080/16501970410015587 15788333.
25. Wong MN, Murdoch B, Whelan B-M. Language disorders subsequent to mild traumatic brain injury (MTBI): Evidence from four cases. Aphasiology. 2010;24(10):1155–69. doi: 10.1080/02687030903168212
26. Miles L, Grossman RI, Johnson G, Babb JS, Diller L, Inglese M. Short-term DTI predictors of cognitive dysfunction in mild traumatic brain injury. Brain Injury. 2008;22(2):115–22. doi: 10.1080/02699050801888816 18240040.
27. Muller K, Ingebrigtsen T, Wilsgaard T, Wikran G, Fagerheim T, Romner B, et al. Prediction of time trends in recovery of cognitive function after mild head injury. Neurosurgery. 2009;64(4):698–704; discussion doi: 10.1227/01.NEU.0000340978.42892.78 19349827.
28. Stalnacke BM, Elgh E, Sojka P. One-year follow-up of mild traumatic brain injury: Cognition, disability and life satisfaction of patients seeking consultation. Journal of Rehabilitation Medicine. 2007;39(5):405–11. ISI:000246962400011. doi: 10.2340/16501977-0057 17549333
29. Konrad C, Geburek AJ, Rist F, Blumenroth H, Fischer B, Husstedt I, et al. Long-term cognitive and emotional consequences of mild traumatic brain injury. Psychol Med. 2011;41(6):1197–211. Epub 2010/09/24. doi: 10.1017/S0033291710001728 20860865.
30. Bohnen N, Twijnstra A, Jolles J. Persistence of postconcussional symptoms in uncomplicated, mildly head-injured patients: A prospective cohort study. Neuropsychiatry, Neuropsychology, and Behavioral Neurology. 1993;6(3):193–200.
31. Kashluba S, Hanks RA, Casey JE, Millis SR. Neuropsychologic and functional outcome after complicated mild traumatic brain injury. Archives of Physical Medicine and Rehabilitation. 2008;89(5):904–11. Epub 2008/05/03. doi: 10.1016/j.apmr.2007.12.029 18452740.
32. Jaffe KM, Polissar NL, Fay GC, Liao S. Recovery trends over three years following pediatric traumatic brain injury. Arch Phys Med Rehabil. 1995;76(1):17–26. 7811169.
33. Levin HS, Fletcher JM, Kusnerik L, Kufera JA, Lilly MA, Duffy FF, et al. Semantic memory following pediatric head injury: relationship to age, severity of injury, and MRI. Cortex. 1996;32(3):461–78. 8886522.
34. Phillipou A, Douglas J, Krieser D, Ayton L, Abel L. Changes in saccadic eye movement and memory function after mild closed head injury in children. Dev Med Child Neurol. 2014;56(4):337–45. doi: 10.1111/dmcn.12345 24350895.
35. Barrow IM, Collins JN, Britt LD. The influence of an auditory distraction on rapid naming after a mild traumatic brain injury: a longitudinal study. J Trauma. 2006;61(5):1142–9. doi: 10.1097/01.ta.0000241238.70269.c1 17099520.
36. Smart CM, Karr JE, Areshenkoff CN, Rabin LA, Hudon C, Gates N, et al. Non-Pharmacologic Interventions for Older Adults with Subjective Cognitive Decline: Systematic Review, Meta-Analysis, and Preliminary Recommendations. Neuropsychol Rev. 2017. doi: 10.1007/s11065-017-9342-8 28271346.
37. Iverson GL, Gardner AJ, Terry DP, Ponsford JL, Sills AK, Broshek DK, et al. Predictors of clinical recovery from concussion: a systematic review. Br J Sports Med. 2017;51(12):941–8. doi: 10.1136/bjsports-2017-097729 28566342.
38. Tay SY, Ang BT, Lau XY, Meyyappan A, Collinson SL. Chronic impairment of prospective memory after mild traumatic brain injury. J Neurotrauma. 2010;27(1):77–83. doi: 10.1089/neu.2009.1074 19698071.
39. Rotarescu V, Ciurea AV. Quality of life in children after mild head injury. J Med Life. 2008;1(3):307–22. 20108508.
40. Anderson V, Catroppa C, Morse S, Haritou F, Rosenfeld J. Outcome from mild head injury in young children: a prospective study. J Clin Exp Neuropsychol. 2001;23(6):705–17. doi: 10.1076/jcen.23.6.705.1015 11910538.
41. Wrightson P, McGinn V, Gronwall D. Mild head injury in preschool children: evidence that it can be associated with a persisting cognitive defect. J Neurol Neurosurg Psychiatry. 1995;59(4):375–80. doi: 10.1136/jnnp.59.4.375 7561915; PubMed Central PMCID: PMC486072.
42. McCauley SR, Levin HS. Prospective memory in pediatric traumatic brain injury: a preliminary study. Dev Neuropsychol. 2004;25(1–2):5–20. doi: 10.1080/87565641.2004.9651919 14984326.
43. Siman R, Giovannone N, Hanten G, Wilde EA, McCauley SR, Hunter JV, et al. Evidence That the Blood Biomarker SNTF Predicts Brain Imaging Changes and Persistent Cognitive Dysfunction in Mild TBI Patients. Front Neurol. 2013;4:190. doi: 10.3389/fneur.2013.00190 24302918; PubMed Central PMCID: PMC3831148.
44. Kinsella GJ, Olver J, Ong B, Gruen R, Hammersley E. Mild traumatic brain injury in older adults: early cognitive outcome. J Int Neuropsychol Soc. 2014;20(6):663–71. doi: 10.1017/S1355617714000447 24834461.
45. Hanten G, Li X, Ibarra A, Wilde EA, Barnes A, McCauley SR, et al. Updating memory after mild traumatic brain injury and orthopedic injuries. J Neurotrauma. 2013;30(8):618–24. doi: 10.1089/neu.2012.2392 23227898; PubMed Central PMCID: PMC3638547.
46. Babikian T, McArthur D, Asarnow RF. Predictors of 1-month and 1-year neurocognitive functioning from the UCLA longitudinal mild, uncomplicated, pediatric traumatic brain injury study. Journal of the International Neuropsychological Society. 2013;19(2):145–54. Epub 2012/11/20. doi: 10.1017/S135561771200104X 23157821.
47. Romero K, Lobaugh NJ, Black SE, Ehrlich L, Feinstein A. Old wine in new bottles: validating the clinical utility of SPECT in predicting cognitive performance in mild traumatic brain injury. Psychiatry Res. 2015;231(1):15–24. doi: 10.1016/j.pscychresns.2014.11.003 25466236.
48. Waljas M, Iverson GL, Lange RT, Hakulinen U, Dastidar P, Huhtala H, et al. A prospective biopsychosocial study of the persistent post-concussion symptoms following mild traumatic brain injury. J Neurotrauma. 2015;32(8):534–47. doi: 10.1089/neu.2014.3339 25363626.
49. Zhou Y, Kierans A, Kenul D, Ge Y, Rath J, Reaume J, et al. Mild traumatic brain injury: longitudinal regional brain volume changes. Radiology. 2013;267(3):880–90. doi: 10.1148/radiol.13122542 23481161; PubMed Central PMCID: PMC3662902.
50. Croall ID, Cowie CJ, He J, Peel A, Wood J, Aribisala BS, et al. White matter correlates of cognitive dysfunction after mild traumatic brain injury. Neurology. 2014;83(6):494–501. doi: 10.1212/WNL.0000000000000666 25031282; PubMed Central PMCID: PMC4142001.
51. Kwok FY, Lee TM, Leung CH, Poon WS. Changes of cognitive functioning following mild traumatic brain injury over a 3-month period. Brain Inj. 2008;22(10):740–51. doi: 10.1080/02699050802336989 18787983.
52. Ponsford J, Cameron P, Fitzgerald M, Grant M, Mikocka-Walus A. Long-term outcomes after uncomplicated mild traumatic brain injury: a comparison with trauma controls. Journal of Neurotrauma. 2011;28(6):937–46. Epub 2011/03/18. doi: 10.1089/neu.2010.1516 21410321.
53. Pare N, Rabin LA, Fogel J, Pepin M. Mild traumatic brain injury and its sequelae: characterisation of divided attention deficits. Neuropsychol Rehabil. 2009;19(1):110–37. doi: 10.1080/09602010802106486 18609010.
54. Marsh NV, Smith MD. Post-concussion syndrome and the coping hypothesis. Brain Inj. 1995;9(6):553–62. 7581351.
55. Heitger MH, Jones RD, Dalrymple-Alford JC, Frampton CM, Ardagh MW, Anderson TJ. Motor deficits and recovery during the first year following mild closed head injury. Brain Inj. 2006;20(8):807–24. doi: 10.1080/02699050600676354 17060148.
56. Ponsford J, Willmott C, Rothwell A, Cameron P, Ayton G, Nelms R, et al. Cognitive and behavioral outcome following mild traumatic head injury in children. Journal of Head Trauma Rehabilitation. 1999;14(4):360–72. 10407209.
57. Ponsford J, Willmott C, Rothwell A, Cameron P, Kelly AM, Nelms R, et al. Factors influencing outcome following mild traumatic brain injury in adults. Journal of the International Neuropsychological Society. 2000;6(5):568–79. 10932476.
58. Maillard-Wermelinger A, Yeates KO, Gerry Taylor H, Rusin J, Bangert B, Dietrich A, et al. Mild traumatic brain injury and executive functions in school-aged children. Dev Neurorehabil. 2009;12(5):330–41. doi: 10.3109/17518420903087251 20477562; PubMed Central PMCID: PMC3013371.
59. Xu Z, Lv XA, Wang JW, Chen ZP, Qiu HS. Predictive value of early decreased plasma ghrelin level for three-month cognitive deterioration in patients with mild traumatic brain injury. Peptides. 2014;54:180–5. doi: 10.1016/j.peptides.2014.01.021 24508379.
60. Ellemberg D, Leclerc S, Couture S, Daigle C. Prolonged neuropsychological impairments following a first concussion in female university soccer athletes. Clin J Sport Med. 2007;17(5):369–74. doi: 10.1097/JSM.0b013e31814c3e3e 17873549.
61. Babikian T, Satz P, Zaucha K, Light R, Lewis RS, Asarnow RF. The UCLA longitudinal study of neurocognitive outcomes following mild pediatric traumatic brain injury. J Int Neuropsychol Soc. 2011;17(5):886–95. doi: 10.1017/S1355617711000907 21813031; PubMed Central PMCID: PMC4579245.
62. Catale C, Marique P, Closset A, Meulemans T. Attentional and executive functioning following mild traumatic brain injury in children using the Test for Attentional Performance (TAP) battery. J Clin Exp Neuropsychol. 2009;31(3):331–8. doi: 10.1080/13803390802134616 18608644.
63. Lee H, Wintermark M, Gean AD, Ghajar J, Manley GT, Mukherjee P. Focal lesions in acute mild traumatic brain injury and neurocognitive outcome: CT versus 3T MRI. J Neurotrauma. 2008;25(9):1049–56. doi: 10.1089/neu.2008.0566 18707244.
64. Polissar NL, Fay GC, Jaffe KM, Liao S, Martin KM, Shurtleff HA, et al. Mild pediatric traumatic brain injury: adjusting significance levels for multiple comparisons. Brain Inj. 1994;8(3):249–63. 8004083.
65. Chadwick O, Rutter M, Brown G, Shaffer D, Traub MU. A prospective study of children with head injuries: II. Cognitive sequelae. Psychol Med. 1981;11(1):49–61. 7208746.
66. Dikmen S, Machamer J, Temkin N. Mild head injury: facts and artifacts. Journal of Clinical and Experimental Neuropsychology. 2001;23(6):729–38. doi: 10.1076/jcen.23.6.729.1019 11910540.
67. Mangels JA, Craik FI, Levine B, Schwartz ML, Stuss DT. Effects of divided attention on episodic memory in chronic traumatic brain injury: a function of severity and strategy. Neuropsychologia. 2002;40(13):2369–85. 12417466.
68. Geary EK, Kraus MF, Pliskin NH, Little DM. Verbal learning differences in chronic mild traumatic brain injury. Journal of the International Neuropsychological Society. 2010;16(3):506–16. Epub 2010/03/02. doi: 10.1017/S135561771000010X 20188015.
69. Vanderploeg RD, Curtiss G, Belanger HG. Long-term neuropsychological outcomes following mild traumatic brain injury. Journal of the International Neuropsychological Society. 2005;11(3):228–36. ISI:000229005900002. doi: 10.1017/S1355617705050289 15892899
70. Axelrod BN, Wall JR. Expectancy of impaired neuropsychological test scores in a non-clinical sample. Int J Neurosci. 2007;117(11):1591–602. doi: 10.1080/00207450600941189 17917928.
71. Heaton RK, Grant I, Matthews CG. Comprehensive norms for an extended Halstead-Reitan Battery: Demographic corrections, research findings, and clinical applications. Odessa, FL: Psychological Assessment Resources, Inc.; 1991.
72. Heaton RK, Miller SW, Taylor MJ, Grant I. Revised comprehensive norms for an expanded Halstead-Reitan Battery: Demographically adjusted neuropsychological norms for African American and Caucasian adults professional manual. Lutz, FL: Psychological Assessment Resources; 2004.
73. Ingraham LJ, Aiken CB. An empirical approach to determining criteria for abnormality in test batteries with multiple measures. Neuropsychology 1996;10:120–4.
74. Iverson GL, Brooks BL, Holdnack JA. Misdiagnosis of cognitive impairment in forensic neuropsychology. In: Heilbronner RL, editor. Neuropsychology in the courtroom: Expert analysis of reports and testimony. New York: Guilford Press; 2008. p. 243–66.
75. Palmer BW, Boone KB, Lesser IM, Wohl MA. Base rates of "impaired" neuropsychological test performance among healthy older adults. Arch Clin Neuropsychol. 1998;13(6):503–11. 14590634.
76. Schretlen DJ, Testa SM, Winicki JM, Pearlson GD, Gordon B. Frequency and bases of abnormal performance by healthy adults on neuropsychological testing. Journal of the International Neuropsychological Society. 2008;14(3):436–45. doi: 10.1017/S1355617708080387 18419842
77. Brooks BL, Iverson GL, White T. Substantial risk of "Accidental MCI" in healthy older adults: Base rates of low memory scores in neuropsychological assessment. Journal of the International Neuropsychological Society. 2007;13(3):490–500. doi: 10.1017/S1355617707070531 17445298
78. Brooks BL, Iverson GL, Holdnack JA, Feldman HH. Potential for misclassification of mild cognitive impairment: a study of memory scores on the Wechsler Memory Scale-III in healthy older adults. J Int Neuropsychol Soc. 2008;14(3):463–78. doi: 10.1017/S1355617708080521 18419845.
79. Crawford JR, Garthwaite PH, Gault CB. Estimating the percentage of the population with abnormally low scores (or abnormally large score differences) on standardized neuropsychological test batteries: a generic method with applications. Neuropsychology. 2007;21(4):419–30. Test Software http://homepages.abdn.ac.uk/j.crawford/pages/dept/PercentAbnormKtests.htm. doi: 10.1037/0894-4105.21.4.419 17605575.
80. Iverson GL, Brooks BL, White T, Stern RA. Neuropsychological Assessment Battery (NAB): Introduction and advanced interpretation. In: Horton AM Jr., Wedding D, editors. The Neuropsychology Handbook. 3rd ed. New York: Springer Publishing Inc; 2008. p. 279–343.
81. Binder LM, Iverson GL, Brooks BL. To err is human: “Abnormal” neuropsychological scores and variability are common in healthy adults. Archives of Clinical Neuropsychology. 2009;24:31–46. doi: 10.1093/arclin/acn001 19395355
82. Brooks BL, Sherman EM, Iverson GL. Healthy children get low scores too: prevalence of low scores on the NEPSY-II in preschoolers, children, and adolescents. Archives of Clinical Neuropsychology. 2010;25(3):182–90. Epub 2010/02/25. doi: 10.1093/arclin/acq005 20179013.
83. Iverson GL, Brooks BL, Holdnack JA. Evidence-based neuropsychological assessment following work-related injury. In: Bush SS, Iverson GL, editors. Neuropsychological assessment of work-related injuries. New York: Guilford Press; 2012. p. 360–400.
84. Brooks BL, Iverson GL, White T. Advanced interpretation of the Neuropsychological Assessment Battery (NAB) with older adults: Base rate analyses, discrepancy scores, and interpreting change. Archives of Clinical Neuropsychology. 2009;24(7):647–57. doi: 10.1093/arclin/acp061 19749192
85. Brooks BL, Iverson GL, Holdnack JA. Understanding and using multivariate base rates with the WAIS-IV/WMS-IV. In: Holdnack JA, Drozdick LW, Weiss LG, Iverson GL, editors. WAIS-IV/WMS-IV/ACS: Advanced clinical interpretation. San Diego, CA: Elsevier Science; 2013. p. 75–102.
86. Brooks BL, Iverson GL, Lanting SC, Horton AM, Reynolds CR. Improving test interpretation for detecting executive dysfunction in adults and older adults: prevalence of low scores on the test of verbal conceptualization and fluency. Appl Neuropsychol Adult. 2012;19(1):61–70. Epub 2012/03/06. doi: 10.1080/09084282.2012.651951 22385381.
87. Crawford JR, Garthwaite PH, Sutherland D, Borland N. Some supplementary methods for the analysis of the Delis-Kaplan Executive Function System. Psychol Assess. 2011;23(4):888–98. doi: 10.1037/a0023712 21574720.
88. Manly JJ, Echemendia RJ. Race-specific norms: using the model of hypertension to understand issues of race, culture, and education in neuropsychology. Arch Clin Neuropsychol. 2007;22(3):319–25. doi: 10.1016/j.acn.2007.01.006 17350797.
89. Brickman AM, Cabo R, Manly JJ. Ethical issues in cross-cultural neuropsychology. Appl Neuropsychol. 2006;13(2):91–100. doi: 10.1207/s15324826an1302_4 17009882.
90. Ardila A. Directions of research in cross-cultural neuropsychology. J Clin Exp Neuropsychol. 1995;17(1):143–50. doi: 10.1080/13803399508406589 7608296.
91. O'Bryant SE, O'Jile JR, McCaffrey RJ. Reporting of demographic variables in neuropsychological research: trends in the current literature. Clin Neuropsychol. 2004;18(2):229–33. doi: 10.1080/13854040490501439 15587670.
92. Patton DE, Duff K, Schoenberg MR, Mold J, Scott JG, Adams RL. Performance of cognitively normal African Americans on the RBANS in community dwelling older adults. Clin Neuropsychol. 2003;17(4):515–30. doi: 10.1076/clin.17.4.515.27948 15168916.
93. Casaletto KB, Umlauf A, Marquine M, Beaumont JL, Mungas D, Gershon R, et al. Demographically Corrected Normative Standards for the Spanish Language Version of the NIH Toolbox Cognition Battery. J Int Neuropsychol Soc. 2016;22(3):364–74. doi: 10.1017/S135561771500137X 26817924.
94. Brooks BL, Holdnack JA, Iverson GL. Advanced clinical interpretation of the WAIS-IV and WMS-IV: prevalence of low scores varies by level of intelligence and years of education. Assessment. 2011;18(2):156–67. Epub 2010/10/16. doi: 10.1177/1073191110385316 20947705.
95. Horton AM Jr. Above-average intelligence and neuropsychological test score performance. Int J Neurosci. 1999;99(1–4):221–31. 10495218.
96. Warner MH, Ernst J, Townes BD, Peel J, Preston M. Relationships between IQ and neuropsychological measures in neuropsychiatric populations: within-laboratory and cross-cultural replications using WAIS and WAIS-R. J Clin Exp Neuropsychol. 1987;9(5):545–62. doi: 10.1080/01688638708410768 3667899.
97. Tremont G, Hoffman RG, Scott JG, Adams RL. Effect of intellectual level on neuropsychological test performance: A response to Dodrill (1997). The Clinical Neuropsychologist. 1998;12:560–7.
98. Steinberg BA, Bieliauskas LA, Smith GE, Ivnik RJ, Malec JF. Mayo's Older Americans Normative Studies: Age- and IQ-Adjusted Norms for the Auditory Verbal Learning Test and the Visual Spatial Learning Test. Clin Neuropsychol. 2005;19(3–4):464–523. doi: 10.1080/13854040590945193 16120537.
99. Steinberg BA, Bieliauskas LA, Smith GE, Ivnik RJ. Mayo's Older Americans Normative Studies: Age- and IQ-Adjusted Norms for the Trail-Making Test, the Stroop Test, and MAE Controlled Oral Word Association Test. Clin Neuropsychol. 2005;19(3–4):329–77. doi: 10.1080/13854040590945210 16120535.
100. McClintock SM, Husain MM, Greer TL, Cullum CM. Association between depression severity and neurocognitive function in major depressive disorder: a review and synthesis. Neuropsychology. 2010;24(1):9–34. doi: 10.1037/a0017336 20063944.
101. Terry DP, Iverson GL, Panenka W, Colantonio A, Silverberg ND. Workplace and non-workplace mild traumatic brain injuries in an outpatient clinic sample: A case-control study. PLoS One. 2018;13(6):e0198128. doi: 10.1371/journal.pone.0198128 29856799; PubMed Central PMCID: PMC5983513 individuals who have sustained mild TBIs. He acknowledges unrestricted philanthropic support from the Mooney-Reed Charitable Foundation and ImPACT Applications, Inc. Noah Silverberg has a clinical practice in forensic neuropsychology and William Panenka has a clinical practice in forensic neuropsychiatry involving individuals who have sustained mild TBIs. This does not alter our adherence to PLOS ONE policies on sharing data and materials.
102. McCrea M, Iverson GL, McAllister TW, Hammeke TA, Powell MR, Barr WB, et al. An integrated review of recovery after mild traumatic brain injury (MTBI): implications for clinical management. Clin Neuropsychol. 2009;23(8):1368–90. doi: 10.1080/13854040903074652 19882476.
103. Christensen BK, Colella B, Inness E, Hebert D, Monette G, Bayley M, et al. Recovery of cognitive function after traumatic brain injury: a multilevel modeling analysis of Canadian outcomes. Arch Phys Med Rehabil. 2008;89(12 Suppl):S3–15. doi: 10.1016/j.apmr.2008.10.002 19081439.
104. Ruttan L, Martin K, Liu A, Colella B, Green RE. Long-term cognitive outcome in moderate to severe traumatic brain injury: a meta-analysis examining timed and untimed tests at 1 and 4.5 or more years after injury. Arch Phys Med Rehabil. 2008;89(12 Suppl):S69–76. doi: 10.1016/j.apmr.2008.07.007 19081444.
105. Draper K, Ponsford J. Cognitive functioning ten years following traumatic brain injury and rehabilitation. Neuropsychology. 2008;22(5):618–25. doi: 10.1037/0894-4105.22.5.618 18763881.
106. Levin HS, Grossman RG, Rose JE, Teasdale G. Long-term neuropsychological outcome of closed head injury. J Neurosurg. 1979;50(4):412–22. doi: 10.3171/jns.1979.50.4.0412 311378.
107. Millis SR, Rosenthal M, Novack TA, Sherer M, Nick TG, Kreutzer JS, et al. Long-term neuropsychological outcome after traumatic brain injury. J Head Trauma Rehabil. 2001;16(4):343–55. 11461657.
108. Iverson GL. Complicated vs uncomplicated mild traumatic brain injury: acute neuropsychological outcome. Brain Inj. 2006;20(13–14):1335–44. 17378225.
109. Lange RT, Iverson GL, Franzen MD. Neuropsychological functioning following complicated vs. uncomplicated mild traumatic brain injury. Brain Injury. 2009;23(2):83–91. doi: 10.1080/02699050802635281 19191087.
110. de Guise E, Lepage JF, Tinawi S, LeBlanc J, Dagher J, Lamoureux J, et al. Comprehensive clinical picture of patients with complicated vs uncomplicated mild traumatic brain injury. The Clinical Neuropsychologist. 2010;24(7):1113–30. Epub 2010/08/24. doi: 10.1080/13854046.2010.506199 20730678.
111. Lange RT, Brickell TA, French LM, Merritt VC, Bhagwat A, Pancholi S, et al. Neuropsychological outcome from uncomplicated mild, complicated mild, and moderate traumatic brain injury in US military personnel. Archives of Clinical Neuropsychology. 2012;27(5):480–94. Epub 2012/07/07. doi: 10.1093/arclin/acs059 22766317.
112. Panenka WJ, Lange RT, Bouix S, Shewchuk JR, Heran MK, Brubacher JR, et al. Neuropsychological outcome and diffusion tensor imaging in complicated versus uncomplicated mild traumatic brain injury. PLoS One. 2015;10(4):e0122746. doi: 10.1371/journal.pone.0122746 25915776; PubMed Central PMCID: PMC4411162.
113. Yuh EL, Cooper SR, Mukherjee P, Yue JK, Lingsma HF, Gordon WA, et al. Diffusion Tensor Imaging for Outcome Prediction in Mild Traumatic Brain Injury: A TRACK-TBI Study. Journal of Neurotrauma. 2014;31(17):1457–77. Epub 2014/04/20. doi: 10.1089/neu.2013.3171 24742275; PubMed Central PMCID: PMC4144386.
114. Beauchamp MH, Beare R, Ditchfield M, Coleman L, Babl FE, Kean M, et al. Susceptibility weighted imaging and its relationship to outcome after pediatric traumatic brain injury. Cortex. 2013;49(2):591–8. doi: 10.1016/j.cortex.2012.08.015 23062584.
115. Manzanero S, Elkington LJ, Praet S, Lovell G, Waddington G, Highes DC. Post-concussion recovery in children and adolescents: A narrative review. Journal of Concussion. 2017;1:2059700217726874.
116. Bhowmick S, D'Mello V, Ponery N, Abdul-Muneer PM. Neurodegeneration and Sensorimotor Deficits in the Mouse Model of Traumatic Brain Injury. Brain Sci. 2018;8(1). doi: 10.3390/brainsci8010011 29316623; PubMed Central PMCID: PMC5789342.
117. Grandhi R, Tavakoli S, Ortega C, Simmonds MJ. A Review of Chronic Pain and Cognitive, Mood, and Motor Dysfunction Following Mild Traumatic Brain Injury: Complex, Comorbid, and/or Overlapping Conditions? Brain Sci. 2017;7(12). doi: 10.3390/brainsci7120160 29211026; PubMed Central PMCID: PMC5742763.
118. Morse AM, Garner DR. Traumatic Brain Injury, Sleep Disorders, and Psychiatric Disorders: An Underrecognized Relationship. Med Sci (Basel). 2018;6(1). doi: 10.3390/medsci6010015 29462866; PubMed Central PMCID: PMC5872172.
Článek vyšel v časopise
PLOS One
2019 Číslo 9
- Jak a kdy u celiakie začíná reakce na lepek? Možnou odpověď poodkryla čerstvá kanadská studie
- Pomůže v budoucnu s triáží na pohotovostech umělá inteligence?
- Spermie, vajíčka a mozky – „jednohubky“ z výzkumu 2024/38
- Infekce se v Americe po příjezdu Kolumba šířily nesrovnatelně déle, než se traduje
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
Nejčtenější v tomto čísle
- Graviola (Annona muricata) attenuates behavioural alterations and testicular oxidative stress induced by streptozotocin in diabetic rats
- CH(II), a cerebroprotein hydrolysate, exhibits potential neuro-protective effect on Alzheimer’s disease
- Comparison between Aptima Assays (Hologic) and the Allplex STI Essential Assay (Seegene) for the diagnosis of Sexually transmitted infections
- Assessment of glucose-6-phosphate dehydrogenase activity using CareStart G6PD rapid diagnostic test and associated genetic variants in Plasmodium vivax malaria endemic setting in Mauritania