A plant biostimulant made from the marine brown algae Ascophyllum nodosum and chitosan reduce Fusarium head blight and mycotoxin contamination in wheat
Autoři:
L. R. Gunupuru aff001; J. S. Patel aff001; M. W. Sumarah aff002; J. B. Renaud aff002; E. G. Mantin aff001; B. Prithiviraj aff001
Působiště autorů:
Department of Plant, Food and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, Nova Scotia, Canada
aff001; Agriculture and Agri-Food Canada, London, Ontario, Canada
aff002
Vyšlo v časopise:
PLoS ONE 14(9)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0220562
Souhrn
Fusarium head blight (FHB) caused by Fusarium graminearum is a disease that results in yield loss and mycotoxin contamination in wheat globally. This study assessed the effect of a plant biostimulant prepared from a brown macroalga Ascophyllum nodosum (Liquid Seaweed Extract; LSE) alone and in combination with chitosan in controlling Fusarium. Wheat seedlings drenched with LSE and chitosan in combination showed reduced severity of F. graminearum infection on leaves as evidenced by a significant reduction in necrotic area and fewer number of conidia produced in the necrotic area. Gene expression studies showed that the combination of LSE and chitosan amplified the response of pathogenesis-related genes (TaPR1.1, TaPR2, TaPR3, TaGlu2) in wheat seedlings infected with Fusarium spores above that observed for the individual treatments. The combination treatments were more effective in enhancing the activity of various defense related enzymes such as peroxidase and polyphenol oxidase. FHB studies on adult plants showed a reduction of bleached spikes in wheat heads treated with the combination of LSE and chitosan. Mycotoxin content appeared to be correlated with FHB severity. Combination treatments of LSE and chitosan reduced the levels of mycotoxins deoxynivalenol and sambucinol in wheat grains. Systemic disease resistance appears to be induced by LSE and chitosan in response to F. graminearum in wheat by inducing defense genes and enzymes.
Klíčová slova:
Biology and life sciences – Organisms – Eukaryota – Plants – Grasses – Wheat – Seedlings – Microbiology – Medical microbiology – Microbial pathogens – Fungal pathogens – Fusarium – Microbial control – Mycology – Plant science – Plant anatomy – Leaves – Plant physiology – Plant defenses – Plant pathology – Plant pathogens – Plant fungal pathogens – Medicine and health sciences – Pathology and laboratory medicine – Pathogens – Pharmacology – Antimicrobial resistance
Zdroje
1. Balmer D, Mauch-Mani B. Plant hormones and metabolites as universal vocabulary in plant defense signaling. Signal Commun Plants. 2012;14: 37–50. Available: http://www.springer.com/series/8094
2. Reignault P, Walters D. Topical Application of Inducers for Disease Control. Induced Resistance for Plant Defense: A Sustainable Approach to Crop Protection. Oxford, UK: Blackwell Publishing; 2014. pp. 193–231. doi: 10.1002/9781118371848.ch10
3. Yu T, Chen J, Chen R, Huang B, Liu D, Zheng X. Biocontrol of blue and gray mold diseases of pear fruit by integration of antagonistic yeast with salicylic acid. Int J Food Microbiol. Elsevier; 2007;116: 339–345. doi: 10.1016/J.IJFOODMICRO.2007.02.005 17428566
4. Sangha JS, Ravichandran S, Prithiviraj K, Critchley AT, Prithiviraj B. Sulfated macroalgal polysaccharides λ-carrageenan and ι-carrageenan differentially alter Arabidopsis thaliana resistance to Sclerotinia sclerotiorum. Physiol Mol Plant Pathol. 2010;75: 38–45. doi: 10.1016/j.pmpp.2010.08.003
5. Vera J, Castro J, Gonzalez A, Moenne A, Vera J, Castro J, et al. Seaweed Polysaccharides and Derived Oligosaccharides Stimulate Defense Responses and Protection Against Pathogens in Plants. Mar Drugs. MDPI; 2011;9: 2514–2525. doi: 10.3390/md9122514 22363237
6. Sharma HSS, Fleming C, Selby C, Rao JR, Martin T. Plant biostimulants: A review on the processing of macroalgae and use of extracts for crop management to reduce abiotic and biotic stresses. J Appl Phycol. 2014;26: 465–490. doi: 10.1007/s10811-013-0101-9
7. Wang Y, Shibuya M, Taneda A, Kurauchi T, Senda M, Owens RA, et al. Accumulation of Potato spindle tuber viroid-specific small RNAs is accompanied by specific changes in gene expression in two tomato cultivars. Virology. Academic Press; 2011;413: 72–83. doi: 10.1016/j.virol.2011.01.021 21353278
8. Aranaz I, Mengibar M, Harris R, Panos I, Miralles B, Acosta N, et al. Functional Characterization of Chitin and Chitosan. Curr Chem Biol. 2009;3: 203–230. doi: 10.2174/187231309788166415
9. Tsai GJ, Su WH, Chen HC, Pan CL. Antimicrobial activity of shrimp chitin and chitosan from different treatments and applications of fish preservation. Fish Sci. 2002;68: 170–177. doi: 10.1046/j.1444-2906.2002.00404.x
10. Chang TH. Disease Control Efficacy of Chitosan Preparations against Tomato Leaf Mold. Res Plant Dis. The Korean Society of Plant Pathology; 2009;15: 248–253.
11. Moussa TAA, Almaghrabi OA, Abdel-Moneim TS. Biological control of the wheat root rot caused by Fusarium graminearum using some PGPR strains in Saudi Arabia. Ann Appl Biol. John Wiley & Sons, Ltd (10.1111); 2013;163: 72–81. doi: 10.1111/aab.12034
12. Khan MR, Fischer S, Egan D, Doohan FM. Biological Control of Fusarium Seedling Blight Disease of Wheat and Barley. Phytopathology. 2006;96: 386–394. doi: 10.1094/PHYTO-96-0386 18943420
13. Reddy MVB, Arul J, Angers P, Couture L. Chitosan treatment of wheat seeds induces resistance to Fusarium graminearum and improves seed quality. J Agric Food Chem. 1999;47: 1208–1216. doi: 10.1021/jf981225k 10552439
14. Goswami RS, Kistler HC. Heading for disaster: Fusarium graminearum on cereal crops. Mol Plant Pathol.; 2004. 515–525. doi: 10.1111/j.1364-3703.2004.00252.x 20565626
15. Gunupuru LR, Perochon A, Doohan FM. Deoxynivalenol resistance as a component of FHB resistance. Trop Plant Pathol. 2017;42: 175–183. doi: 10.1007/s40858-017-0147-3
16. DePauw RM, Knox RE, Clarke FR, Clarke JM, Fernandez MR, McCaig TN. Helios hard red spring wheat. Can J Plant Sci. NRC Research Press Ottawa, Canada; 2007;87: 515–520. doi: 10.4141/CJPS06002
17. Harris LJ, Balcerzak M, Johnston A, Schneiderman D, Ouellet T. Host-preferential Fusarium graminearum gene expression during infection of wheat, barley, and maize. Fungal Biol.; 2016;120: 111–123. doi: 10.1016/j.funbio.2015.10.010 26693688
18. Greenhalgh R, Neish GA, Miller JD. Deoxynivalenol, Acetyl Deoxynivalenol, and Zearalenone Formation by Canadian Isolates of Fusarium graminearum on Solid Substrates. Appl Environ Microbiol. 1983; 46: 625–629. 6227284
19. McCormick SP, Alexander NJ, Harris LJ. CLM1 of Fusarium graminearum Encodes a Longiborneol Synthase Required for Culmorin Production. Appl Environ Microbiol. 2010;76: 136–141. doi: 10.1128/AEM.02017-09 19880637
20. Bai G-H, Shaner G. Variation in Fusarium graminearum and cultivar resistance to wheat scab. Plant Dis. 1996;
21. Brennan JM, Egan D, Cooke BM, Doohan FM. Effect of temperature on head blight of wheat caused by Fusarium culmorum and F. graminearum. Plant Pathol. 2005;54: 156–160. doi: 10.1111/j.1365-3059.2005.01157.x
22. Browne RA, Cooke BM. Development and Evaluation of an in vitro Detached Leaf Assay forc Pre-Screening Resistance to Fusarium Head Blight in Wheat. Eur J Plant Pathol. 2004;110: 91–102. doi: 10.1023/B:EJPP.0000010143.20226.21
23. Perochon A, Jianguang J, Kahla A, Arunachalam C, Scofield SR, Bowden S, et al. TaFROG encodes a Pooideae orphan protein that interacts with SnRK1 and enhances resistance to the mycotoxigenic fungus Fusarium graminearum. Plant Physiol. 2015;169: 2895–2906. doi: 10.1104/pp.15.01056 26508775
24. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. NIH Public Access; 2012;9: 676–82. doi: 10.1038/nmeth.2019 22743772
25. Babaoglu Aydaş S, Ozturk S, Aslim B. Phenylalanine ammonia lyase (PAL) enzyme activity and antioxidant properties of some cyanobacteria isolates. Food Chem. 2013;136: 164–169. doi: 10.1016/j.foodchem.2012.07.119 23017408
26. Silva CRD, Koblitz MGB. Partial characterization and inactivation of peroxidases and polyphenol-oxidases of umbu-cajá (Spondias spp.). Ciência e Tecnol Aliment. 2010;30: 790–796. doi: 10.1590/S0101-20612010000300035
27. Peroxidases Pütter J.. Methods Enzym Anal. Academic Press; 1974; 685–690. doi: 10.1016/B978-0-12-091302-2.50033–5
28. Ilangumaran G, Stratton G, Ravichandran S, Shukla PS, Potin P, Asiedu S, et al. Microbial Degradation of Lobster Shells to Extract Chitin Derivatives for Plant Disease Management. Front Microbiol. Frontiers; 2017;8: 781. doi: 10.3389/fmicb.2017.00781 28529501
29. Livak KJ, Schmittgen TD. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods. Academic Press; 2001;25: 402–408. doi: 10.1006/METH.2001.1262 11846609
30. Zadoks JC, Chang TT, Konzak C. A decimal code for the growth stages of cereals. Weed Res. 1974;14: 415–421.
31. Sulyok M, Krska R, Schuhmacher R. A liquid chromatography/tandem mass spectrometric multi-mycotoxin method for the quantification of 87 analytes and its application to semi-quantitative screening of moldy food samples. Anal Bioanal Chem. Springer-Verlag; 2007;389: 1505–1523. doi: 10.1007/s00216-007-1542-2 17874237
32. Renaud JB, Kelman MJ, McMullin DR, Yeung KK-C, Sumarah MW. Application of C8 liquid chromatography-tandem mass spectrometry for the analysis of enniatins and bassianolides. J Chromatogr A. Elsevier; 2017;1508: 65–72. doi: 10.1016/j.chroma.2017.05.070 28619584
33. Benhamou N, Kloepper JW, Tuzun S. Induction of resistance against Fusarium wilt of tomato by combination of chitosan with an endophytic bacterial strain: ultrastructure and cytochemistry of the host response. Planta. 1998;204: 153–168.
34. Shimosaka M, Nogawa M, Ohno Y, Okazaki M. Chitosanase from the Plant Pathogenic Fungus, Fusarium solani f. sp. Phaseoli—Purification and Some Properties. Biosci Biotechnol Biochem. 1993;57: 231–235. doi: 10.1271/bbb.57.231 27314774
35. Zachetti V, Cendoya E, Nichea M, Chulze S, Ramirez M. Preliminary Study on the Use of Chitosan as an Eco-Friendly Alternative to Control Fusarium Growth and Mycotoxin Production on Maize and Wheat. Pathogens. 2019;8: 29. doi: 10.3390/pathogens8010029 30841490
36. Jayaraman J, Norrie J, Punja ZK. Commercial extract from the brown seaweed Ascophyllum nodosum reduces fungal diseases in greenhouse cucumber. J Appl Phycol. 2011;23: 353–361. doi: 10.1007/s10811-010-9547-1
37. Wong LSL, Abramson D, Tekauz A, Leisle D, McKenzie RIH. Pathogenicity and mycotoxin production of Fusarium species causing head blight in wheat cultivars varying in resistance. Can J Plant Sci Can Phytotech. 1995;75: 261–267.
38. Cuero RG, Duffus E, Osuji G, Pettit R. Aflatoxin control in preharvest maize: effects of chitosan and two microbial agents. J Agric Sci. 1991;117: 165. doi: 10.1017/S0021859600065242
39. Hadwiger LA, Beckman JM, Adams MJ. Localization of Fungal Components in the Pea-Fusarium Interaction Detected Immunochemically with Anti-chitosan and Anti-fungal Cell Wall Antisera. Plant Physiol. 1981;67: 170–175. doi: 10.1104/pp.67.1.170 16661621
40. Boutigny A-L, Barreau C, Atanasova-Penichon V, Verdal-Bonnin M-N, Pinson-Gadais L, Richard-Forget F. Ferulic acid, an efficient inhibitor of type B trichothecene biosynthesis and Tri gene expression in Fusarium liquid cultures. 2009; doi: 10.1016/j.mycres.2009.02.010
41. Mercier L, Lafitte C, Borderies G, Briand X, Esquerre-Tugaye M-T, Fournier J. The algal polysaccharide carrageenans can act as an elicitor of plant defence. New Phytol. 2001;149: 43–51. doi: 10.1046/j.1469-8137.2001.00011.x
42. Shukla PS, Borza T, Critchley AT, Prithiviraj B. Carrageenans from Red Seaweeds As Promoters of Growth and Elicitors of Defense Response in Plants. Front Mar Sci. 2016;3: 1–9. doi: 10.3389/fmars.2016.00081
43. Ghannam A, Abbas A, Alek H, Al-Waari Z, Al-Ktaifani M. Enhancement of local plant immunity against tobacco mosaic virus infection after treatment with sulphated-carrageenan from red alga (Hypnea musciformis). 2013; doi: 10.1016/j.pmpp.2013.07.001
44. Cluzet S, Torregrosa C, Jacquet C, Lafitte C, Fournier J, Mercier L, et al. Gene expression profiling and protection of Medicago truncatula against a fungal infection in response to an elicitor from green algae Ulva spp. Plant, Cell Environ. 2004;27: 917–928. doi: 10.1111/j.1365-3040.2004.01197.x
45. Ryan CA, Farmer EE. Oligosaccharide signals in plants: A current assessment. Plant Physiol. 1991;42: 651–674. doi: 10.1146/annurev.pp.42.060191.003251
46. Sathiyabama M, Akila G, Charles RE. Chitosan-induced defence responses in tomato plants against early blight disease caused by Alternaria solani (Ellis and Martin) Sorauer. Arch Phytopathol Plant Prot. 47: 1963–1973. doi: 10.1080/03235408.2013.863497
47. Krebs SL, Grumet R. Characterization of celery hydrolytic enzymes induced in response to infection by fusarium oxysporum. Physiol Mol Plant Pathol. 1993;43: 193–208. doi: 10.1006/pmpp.1993.1050
48. Bai G, Shaner G. Management and resistance in wheat and barley to Fusarium head blight. Annu Rev Phytopathol. 2004;42: 135–161. doi: 10.1146/annurev.phyto.42.040803.140340 15283663
49. Deliopoulos T, Kettlewell PS, Hare MC. Fungal disease suppression by inorganic salts: A review. Crop Protection. 2010;. 1059–1075. doi: 10.1016/j.cropro.2010.05.011
50. Vasyukova NI, Zinov’eva S V, Il’inskaya LI, Perekhod EA, Chalenko GI, Gerasimova NG, et al. Modulation of plant resistance to diseases by water-soluble chitosan. Appl Biochem Microbiol. 2001;37: 103–109. doi: 10.1023/A:1002865029994
51. Jayaraj J, Wan A, Rahman M, Punja ZK. Seaweed extract reduces foliar fungal diseases on carrot. Crop Prot. 2008;27: 1360–1366. doi: 10.1016/j.cropro.2008.05.005
52. Trotel-Aziz P, Couderchet M, Vernet G, Aziz A. Chitosan stimulates defense reactions in grapevine leaves and inhibits development of Botrytis cinerea. Eur J Plant Pathol. 2006;114: 405–413. doi: 10.1007/s10658-006-0005-5
Článek vyšel v časopise
PLOS One
2019 Číslo 9
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Je libo čepici místo mozkového implantátu?
- Pomůže v budoucnu s triáží na pohotovostech umělá inteligence?
- AI může chirurgům poskytnout cenná data i zpětnou vazbu v reálném čase
- Nová metoda odlišení nádorové tkáně může zpřesnit resekci glioblastomů
Nejčtenější v tomto čísle
- Graviola (Annona muricata) attenuates behavioural alterations and testicular oxidative stress induced by streptozotocin in diabetic rats
- CH(II), a cerebroprotein hydrolysate, exhibits potential neuro-protective effect on Alzheimer’s disease
- Comparison between Aptima Assays (Hologic) and the Allplex STI Essential Assay (Seegene) for the diagnosis of Sexually transmitted infections
- Assessment of glucose-6-phosphate dehydrogenase activity using CareStart G6PD rapid diagnostic test and associated genetic variants in Plasmodium vivax malaria endemic setting in Mauritania
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy