Multi-focus microscope with HiLo algorithm for fast 3-D fluorescent imaging
Autoři:
Wei Lin aff001; Dongping Wang aff001; Yunlong Meng aff001; Shih-Chi Chen aff001
Působiště autorů:
Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong
aff001; Institute of Modern Optics, Tianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, Nankai University, Tianjin, China
aff002
Vyšlo v časopise:
PLoS ONE 14(9)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0222729
Souhrn
In this paper, we present a new multi-focus microscope (MFM) system based on a phase mask and HiLo algorithm, achieving high-speed (20 volumes per second), high-resolution, low-noise 3-D fluorescent imaging. During imaging, the emissions from the specimen at nine different depths are simultaneously modulated and focused to different regions on a single CCD chip, i.e., the CCD chip is subdivided into nine regions to record images from the different selected depths. Next, HiLo algorithm is applied to remove the background noises and to form clean 3-D images. To visualize larger volumes, the nine layers are scanned axially, realizing fast 3-D imaging. In the imaging experiments, a mouse kidney sample of ~ 60 × 60 × 16 μm3 is visualized with only 10 raw images, demonstrating substantially enhanced resolution and contrast as well as suppressed background noises. The new method will find important applications in 3-D fluorescent imaging, e.g., recording fast dynamic events at multiple depths in vivo.
Klíčová slova:
Physical sciences – Physics – Optics – Focal planes – Mathematics – Applied mathematics – Algorithms – Research and analysis methods – Imaging techniques – Fluorescence imaging – Simulation and modeling – Microscopy – Light microscopy – Fluorescence microscopy – Computer and information sciences – Information theory – Background signal noise – Engineering and technology – Signal processing – Equipment – Optical equipment – Optical lenses – Cameras – Biology and life sciences – Anatomy – Renal system – Kidneys – Medicine and health sciences
Zdroje
1. Carlsson K, Danielsson PE, Lenz R, Liljeborg A, Majlöf L, Åslund N. Three-dimensional microscopy using a confocal laser scanning microscope. Opt. Lett. 1985;10(2):53–5. doi: 10.1364/ol.10.000053 19724343
2. Conchello JA, Lichtman JW. Optical sectioning microscopy. Nat. Methods 2005; 2(12): 920–31 doi: 10.1038/nmeth815 16299477
3. Paddock SW and Eliceiri KW. Laser scanning confocal microscopy: history, applications, and related optical sectioning techniques. In: Paddock SW, Editor. Confocal Microscopy. New York; 2014. p. 9–47.
4. Rosen J, Brooker G. Non-scanning motionless fluorescence three-dimensional holographic microscopy. Nat. Photonics 2008; 2(3):190–5.
5. Brooker G, Siegel N, Wang V, Rosen J. Optimal resolution in Fresnel incoherent correlation holographic fluorescence microscopy. Opt. Express 2011; 19(6):5047–62. doi: 10.1364/OE.19.005047 21445140
6. Shao L, Kner P, Rego EH, Gustafsson MG. Super-resolution 3D microscopy of live whole cells using structured illumination. Nat. Methods 2011; 8(12):1044–6. doi: 10.1038/nmeth.1734 22002026
7. Choi H, Tzeranis DS, Cha JW, Clémenceau P, DeJong SJG, VanGeest LK, et al. 3D-resolved fluorescence and phosphorescence lifetime imaging using temporal focusing wide-field two-photon excitation. Opt. Express 2012; 20(24):26219–35. doi: 10.1364/OE.20.026219 23187477
8. Keller PJ, Schmidt AD, Wittbrodt J, Stelzer EH. Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy. Science 2008; 322(5904):1065–9. doi: 10.1126/science.1162493 18845710
9. Rosen J, Kelner R. Modified Lagrange invariants and their role in determining transverse and axial imaging resolutions of self-interference incoherent holographic systems. Opt. Express 2014; 22(23):29048–66. doi: 10.1364/OE.22.029048 25402144
10. Jiang J, Zhang D, Walker S, Gu C, Ke Y, Yung W H, et al. Fast 3-D temporal focusing microscopy using an electrically tunable lens. Opt. Express 2015; 23(19):24362–8. doi: 10.1364/OE.23.024362 26406641
11. Abrahamsson S, Chen J, Hajj B, Stallinga S, Katsov AY, Wisniewski J, et al. Fast multicolor 3D imaging using aberration-corrected multifocus microscopy. Nat. Methods 2012; 10(1):60–5. doi: 10.1038/nmeth.2277 23223154
12. Hajj B, Wisniewski J, Beheiry ME, Chen J, Revyakin A, Wu C, et al. Whole-cell, multicolor superresolution imaging using volumetric multifocus microscopy. Proc. Natl. Acad. Sci. 2014; 111(49):17480–5. doi: 10.1073/pnas.1412396111 25422417
13. Chen HH, Singh VR, Y. Luo. Speckle-based volume holographic microscopy for optically sectioned multi-plane fluorescent imaging. Opt. Express 2015; 23(6):7075–84. doi: 10.1364/OE.23.007075 25837052
14. Descloux A, Grußmayer KS, Bostan E, Lukes T, Bouwens A, Sharipov A, et al. Combined multi-plane phase retrieval and super-resolution optical fluctuation imaging for 4D cell microscopy. Nat. Photonics 2018; 12(3):165–172.
15. Blanchard PM, Greenaway AH. Broadband simultaneous multiplane imaging. Opt. Commun. 2000; 183(1–4): 29–36.
16. Maurer C, Khan S, Fassl S, Bernet S, Ritsch-Marte M. Depth of field multiplexing in microscopy. Opt. Express 2010; 18(3):3023–34. doi: 10.1364/OE.18.003023 20174133
17. Abrahamsson S, Ilic R, Wisniewski J, Mehl B, Yu L, Chen L, et al. Multifocus microscopy with precise color multi-phase diffractive optics applied in functional neuronal imaging. Biomed. Opt. Express 2016; 7(3):855–69. doi: 10.1364/BOE.7.000855 27231594
18. Abrahamsson S, Blom H, Agostinho A, Jans DC, Jost A, Müller M, et al. Multifocus structured illumination microscopy for fast volumetric super-resolution imaging. Biomed. Opt. Express 2017; 8(9):4135–40. doi: 10.1364/BOE.8.004135 28966852
19. Neil MAA, Juškaitis R, Wilson T. Method of obtaining optical sectioning by using structured light in a conventional microscope. Opt. Lett. 1997; 22(24):1905–7. doi: 10.1364/ol.22.001905 18188403
20. Mertz J. Optical sectioning microscopy with planar or structured illumination. Nat. Methods 2011; 8(10):811–9. doi: 10.1038/nmeth.1709 21959136
21. Choi H, Yew EYS, Hallacoglu B, Fantini S, Sheppard CJR, So PTC. Improvement of axial resolution and contrast in temporally focused widefield two-photon microscopy with structured light illumination. Biomed. Opt. Express 2013; 4(7):995–1005. doi: 10.1364/BOE.4.000995 23847726
22. Lim D, Chu KK, Mertz J. Wide-field fluorescence sectioning with hybrid speckle and uniform-illumination microscopy. Opt. Lett. 2008; 33(16):1819–21. doi: 10.1364/ol.33.001819 18709098
23. Michaelson J, Choi H, So PTC, Huang H. Depth-resolved cellular microrheology using HiLo microscopy. Biomed. Opt. Express 2012; 3(6):1241–55. doi: 10.1364/BOE.3.001241 22741071
24. Lin CY, Lin WH, Chien JH, Tsai JC, Luo Y. In vivo volumetric fluorescence sectioning microscopy with mechanical-scan-free hybrid illumination imaging. Biomed. Opt. Express 2016; 7(10):3968–78. doi: 10.1364/BOE.7.003968 27867708
25. Leonardo RD, Ianni F, Ruocco G. Computer generation of optimal holograms for optical trap arrays. Opt. Express 2007; 15(4):1913–22. doi: 10.1364/oe.15.001913 19532430
26. Piestun R, Spektor B, Shamir J. Wave fields in three dimensions: analysis and synthesis. J. Opt. Soc. Am. A 1996; 13(9):1837–48.
27. Zhang J, Pégard N, Zhong J, Adesnik H, Waller L. 3D computer-generated holography by non-convex optimization. Optica 2017; 4(10):1306–13.
28. Hu L, Xuan L, Liu Y, Cao Z, Li D, Mu Q. Phase-only liquid-crystal spatial light modulator for wave-front correction with high precision. Opt. Express 2004; 12 (26): 6403–9. doi: 10.1364/opex.12.006403 19488289
29. Olivier N, Mermillod-Blondin A, Arnold CB, Beaurepaire E. Two-photon microscopy with simultaneous standard and extended depth of field using a tunable acoustic gradient-index lens. Opt. Lett. 2009; 34(11):1684–6. doi: 10.1364/ol.34.001684 19488148
30. Humar M, Yun SH. Intracellular microlasers. Nat. Photonics 2015; 9(9):572–7. doi: 10.1038/nphoton.2015.129 26417383
31. Chen X, He X, Yang J, Wu Q. An effective document image deblurring algorithm. Proceedings of the 24th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2011; 2011 June 20–25; Colorado Springs, CO, USA. New York: IEEE; 2011.
Článek vyšel v časopise
PLOS One
2019 Číslo 9
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Je libo čepici místo mozkového implantátu?
- Pomůže v budoucnu s triáží na pohotovostech umělá inteligence?
- AI může chirurgům poskytnout cenná data i zpětnou vazbu v reálném čase
- Nová metoda odlišení nádorové tkáně může zpřesnit resekci glioblastomů
Nejčtenější v tomto čísle
- Graviola (Annona muricata) attenuates behavioural alterations and testicular oxidative stress induced by streptozotocin in diabetic rats
- CH(II), a cerebroprotein hydrolysate, exhibits potential neuro-protective effect on Alzheimer’s disease
- Comparison between Aptima Assays (Hologic) and the Allplex STI Essential Assay (Seegene) for the diagnosis of Sexually transmitted infections
- Assessment of glucose-6-phosphate dehydrogenase activity using CareStart G6PD rapid diagnostic test and associated genetic variants in Plasmodium vivax malaria endemic setting in Mauritania
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy