Taste perception and oral microbiota are associated with obesity in children and adolescents
Autoři:
Chiara Mameli aff001; Camilla Cattaneo aff002; Simona Panelli aff003; Francesco Comandatore aff003; Arianna Sangiorgio aff001; Giorgio Bedogni aff004; Claudio Bandi aff005; Gianvincenzo Zuccotti aff001; Ella Pagliarini aff002
Působiště autorů:
Department of Pediatrics, V. Buzzi Children's Hospital, University of Milan, Milan, Italy
aff001; Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
aff002; Pediatric Clinical Research Center “Invernizzi”, University of Milan, Milan, Italy
aff003; Clinical Epidemiology Unit, Liver Research Center, Basovizza, Trieste, Italy
aff004; Department of Biosciences and Pediatric Clinical Research Center “Invernizzi”, University of Milan, Milan, Italy
aff005
Vyšlo v časopise:
PLoS ONE 14(9)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0221656
Souhrn
Obesity in childhood and adolescence is considered the most prevalent nutritional disorder, in which eating behaviours represent one important factors of influence. Many aspects influence eating behaviours, but taste is considered the main predictor. However, data concerning correlations of obesity, taste sensitivity and behavioural attitudes, such as food neophobia, in children and adolescents are inconsistent. Moreover, it has been suggested that oral bacteria could have a possible role in obesity development and, also, in taste perception. In this context, the present study focused on host related factors with a proposed link to weight gain. To this purpose, taste sensitivity, salivary microbiota composition and food neophobia were compared between children and adolescents with and without obesity in a cross-sectional study. Results showed that children with obesity presented a significantly lower ability in correctly identifying taste qualities and were characterized by a lesser number of Fungiform Papillae (reported as FP/cm2) compared to normal-weight subjects. Differences in the ecological indexes of microbial alpha-diversity was found between subjects with obesity and normal-weight ones. Moreover, independently from nutritional status, some bacterial genera seemed to differ between subjects with different sensitivity. The potentiality of this multidisciplinary approach could help to better understand and deepen the sensory-driven and microbiological factors related to weight gain.
Klíčová slova:
Biology and life sciences – Neuroscience – Sensory perception – Taste – Psychology – Microbiology – Medical microbiology – Microbiome – Microbial genomics – Genetics – Genomics – Physiology – Physiological parameters – Obesity – Childhood obesity – Nutrition – Organisms – Bacteria – Social sciences – Medicine and health sciences – Body weight – Body Mass Index
Zdroje
1. Mameli C, Krakauer JC, Krakauer NY, Bosetti A, Ferrari CM, Schneider L, et al. Effects of a multidisciplinary weight loss intervention in overweight and obese children and adolescents: 11 years of experience. PLoS One. 2017; 12(7): e0181095. doi: 10.1371/journal.pone.0181095 28704494
2. Mameli C, Krakauer NY, Krakauer JC, Bosetti A, Ferrari CM, Moiana N, et al. The association between a body shape index and cardiovascular risk in overweight and obese children and adolescents. PloS One. 2018; 13(1): e0190426. doi: 10.1371/journal.pone.0190426 29298340
3. Mameli C, Zuccotti GV, Carnovale C, Galli E, Nannini P, Cervia D, et al. An update on the assessment and management of metabolic syndrome, a growing medical emergency in paediatric populations. Pharmacol Res. 2017; 119: 99–117. doi: 10.1016/j.phrs.2017.01.017 28111263
4. Sharafi M, Rawal S, Fernandez ML, Huedo-Medina TB, Duffy VB. Taste phenotype associates with cardiovascular disease risk factors via diet quality in multivariate modeling. Physiol Behav. 2018;194, 103–112. doi: 10.1016/j.physbeh.2018.05.005 29746892
5. Mennella JA, Pepino MY, Reed DR. Genetic and environmental determinants of bitter perception and sweet preferences. Pediatrics. 2005; 115(2): e216–e222. doi: 10.1542/peds.2004-1582 15687429
6. Garcia-Bailo B, Toguri C, Eny KM, El-Sohemy A. Genetic variation in taste and its influence on food selection. OMICS. 2009; 13(1): 69–80. doi: 10.1089/omi.2008.0031 18687042
7. Goldstein GL, Daun H, Tepper BJ. Adiposity in middle-aged women is associated with genetic taste blindness to 6-n-propylthiouracil. Obes Res. 2005; 13: 1017–23. 15976144
8. Pagliarini E, Gaeta D, Laureati M, Battezzati A, Bertoli S. Perceptive, psychological and behavioural determinants of obesity. Chem Senses. 2008; 33(8): 132–133.
9. Proserpio C, Laureati M, Bertoli S, Battezzati A, Pagliarini E. Determinants of obesity in Italian adults: the role of taste sensitivity, food liking, and food Neophobia. Chem Senses. 2016; 41(2): 169–176. doi: 10.1093/chemse/bjv072 26671250
10. Proserpio C, Laureati M, Invitti C, Pagliarini E. Reduced taste responsiveness and increased food neophobia characterize obese adults. Food Qual Prefer. 2018; 63: 73–79.
11. Tepper BJ, Ullrich NV. Influence of genetic taste sensitivity to 6-n-propylthiouracil (PROP), dietary restraint and disinhibition on body mass index in middle-aged women. Physiol Behav. 2002; 75: 305–12. 11897256
12. Keller KL, Tepper BJ. Inherited taste sensitivity to 6-n-propylthiouracil in diet and body weight in children. Obes Res. 2004; 12: 904–12. 15229328
13. Overberg J, Hummel T, Krude H, Wiegand S. Differences in taste sensitivity between obese and non-obese children and adolescents. Arch Dis Child. 2012; 97(12): 1048–1052. doi: 10.1136/archdischild-2011-301189 22995095
14. Donaldson LF, Bennett L, Baic S, Melichar JK. Taste and weight: is there a link?. Am J Clin Nutr. 2009; 90(3): 800S–803S. doi: 10.3945/ajcn.2009.27462Q 19571216
15. Cox DN, Hendrie GA, Carty D. Sensitivity, hedonics and preferences for basic tastes and fat amongst adults and children of differing weight status: A comprehensive review. Food Qual Prefer. 2016; 48: 359–367.
16. Pliner P, Hobden K. Development of a scale to measure the trait of food neophobia in humans. Appetite. 1992; 19: 105–120. 1489209
17. Carruth BR, Ziegler PJ, Gordon A, Barr SI. Prevalence of picky eaters among infants and toddlers and their caregivers’ decisions about offering a new food. J Am Diet Assoc. 2004; 104: 57–64.
18. Kral TV. Food neophobia and its association with diet quality and weight status in children. In Food Neophobia. Woodhead Publishing. 2018. pp. 287–303.
19. Hullar MA, Lampe JW. The gut microbiome and obesity. In Obesity Treatment and Prevention: New Directions. Karger Publishers. 2012. Pp. 67–79.
20. Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Microbial ecology: human gut microbes associated with obesity. Nature. 2006; 444: 1022–1023. 17183309
21. Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, et al. A core gut microbiome in obese and lean twins. Nature. 2009; 457: 480–484. doi: 10.1038/nature07540 19043404
22. Ley RE. Obesity and the human microbiome. Curr Opin Gastroenterol. 2010; 26(1): 5–11. doi: 10.1097/MOG.0b013e328333d751 19901833
23. Goodson JM, Groppo D, Halem S, Carpino E. Is Obesity an Oral Bacterial Disease? J Dent Res. 2009; 88: 519–523. doi: 10.1177/0022034509338353 19587155
24. Cattaneo C, Gargari G, Koirala R, Laureati M, Riso P, Guglielmetti S, Pagliarini E. New insights into the relationship between taste perception and oral microbiota composition. Sci Rep. 2019; 9(1): 3549. doi: 10.1038/s41598-019-40374-3 30837660
25. Solemdal K, Sandvik L, Willumsen T, Mowe M, Hummel T. The impact of oral health on taste ability in acutely hospitalized elderly. PLoS One. 2012; 7(5); e36557. doi: 10.1371/journal.pone.0036557 22570725
26. Besnard P, Christensen JE, Brignot H, Bernard A, Passilly-Degrace et al. Obese Subjects with Specific Gustatory Papillae Microbiota and Salivary Cues Display an Impairment to Sense Lipids. Sci Rep. 2018; 8.
27. Cattaneo C, Riso P, Laureati M, Gargari G, Pagliarini E. Exploring Associations between Interindividual Differences in Taste Perception, Oral Microbiota Composition, and Reported Food Intake. Nutrients. 2019; 11(5): 1167.
28. American Psychiatric Association. Diagnostic and statistical manual of mental disorders. BMC Med. 2013; 17: 133–137.
29. WHO Multicentre Growth Reference Study Group. WHO child growth standards: length height-for-age, weight-for-age, weight-for-length, weight-for-height and body mass index-for-age: methods and development. Geneva: World Health Organization. 2006.
30. Yuan S, Cohen DB, Ravel J, Abdo Z, Forney LJ. Evaluation of methods for the extraction and purification of DNA from the human microbiome. PLoS One. 2012; 7(3): e33865. doi: 10.1371/journal.pone.0033865 22457796
31. Takahashi S, Tomita J, Nishioka K, Hisada T, Nishijima M. Development of a prokaryotic universal primer for simultaneous analysis of bacteria and archaea using next-generation sequencing. PLoS One. 2014; 9(8): e105592. doi: 10.1371/journal.pone.0105592 25144201
32. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol. 2009; 75(23): 7537–7541. doi: 10.1128/AEM.01541-09 19801464
33. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014; 30(15): 2114–2120. doi: 10.1093/bioinformatics/btu170 24695404
34. Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics. 2011; 27: 2194–2200. doi: 10.1093/bioinformatics/btr381 21700674
35. Rognes T, Flouri T, Nichols B, Quince C, Mahé F. VSEARCH: a versatile open source tool for metagenomics. PeerJ. 2016; 4: e2584. doi: 10.7717/peerj.2584 27781170
36. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2012; 41(D1): D590–D596.
37. Wickham H. ggplot2: elegant graphics for data analysis. Springer. 2016.
38. Dray S, Dufour AB. The ade4 package: implementing the duality diagram for ecologists. J Stat Softw. 2007; 22(4): 1–20.
39. Hummel T, Landis BN, Hüttenbrink K. Smell and taste disorders. GMS Curr Top Otorhinolaryngol Head Neck Surg. 2011; 10.
40. Mueller C, Kallert S, Renner B, Stiassny K, Temmel AFP, Hummel T, et al. Quantitative assessment of gustatory function in a clinical context using impregnated "taste strips". Rhinology. 2003; 41(1): 2–6. 12677732
41. Landis BN, Welge-Luessen A, Brämerson A, Bende M, Mueller CA, Nordin S, et al. “Taste Strips”–a rapid, lateralized, gustatory bedside identification test based on impregnated filter papers. J Neurol. 2009; 256(2): 242. doi: 10.1007/s00415-009-0088-y 19221845
42. Mueller CA, Pintscher K, Renner B. Clinical test of gustatory function including umami taste. Ann Otol Rhinol Laryngol. 2011; 120(6): 358–362. 21774441
43. Welge-Lüssen A, Dörig P, Wolfensberger M, Krone F, Hummel T. A study about the frequency of taste disorders. J Neurol. 2011; 258(3): 386–392. doi: 10.1007/s00415-010-5763-5 20886348
44. Knof K, Lanfer A, Bildstein MO, Buchecker K, Hilz H. Development of a method to measure sensory perception in children at the European level. Int J Obes. 2011; 35(S1): S131.
45. Solemdal K, Møinichen-Berstad C, Mowe M, Hummel T, Sandvik L. Impaired taste and increased mortality in acutely hospitalized older people. Chem Senses. 2014; 39(3): 263–269. doi: 10.1093/chemse/bjt116 24448597
46. Solemdal K, Sandvik L, Willumsen T, Mowe M. Taste ability in hospitalised older people compared with healthy, age‐matched controls. Gerodontology. 2014; 31(1): 42–48. doi: 10.1111/ger.12001 22967303
47. Nachtsheim R, Schlich E. The influence of 6-n-propylthiouracil bitterness, fungiform papilla count and saliva flow on the perception of pressure and fat. Food Qual Prefer. 2013; 29(2): 137–145.
48. Bakke A, Vickers Z. Effects of bitterness, roughness, PROP taster status, and fungiform papillae density on bread acceptance. Food Qual Prefer. 2011; 22(4): 317–325.
49. Laureati M, Bergamaschi V, Pagliarini E. Assessing childhood food neophobia: Validation of a scale in Italian primary school children. Food Qual Prefer. 2015; 40, 8–15.
50. Iacus SM, King G, Porro G. Multivariate matching methods that are monotonic imbalance bounding. J Am Stat Assoc. 2011; 106(493): 345–361.
51. Blackwell M, Iacus S, King G, Porro G. CEM: Coarsened exact matching in Stata. Stata J. 2009; 9(4): 524–546.
52. Cleveland WS. Visualizing data. Hobart Press. 1993.
53. Essick GK, Chopra A, Guest S, McGlone F. Lingual tactile acuity, taste perception, and the density and diameter of fungiform papillae in female subjects. Physiol Behav. 2003; 80(2–3): 289–302. 14637228
54. Fogel A, Blissett J. Past exposure to fruit and vegetable variety moderates the link between fungiform papillae density and current variety of FV consumed by children. Physiol Behav. 2017; 177: 107–112. doi: 10.1016/j.physbeh.2017.04.015 28431979
55. Zhang GH, Zhang HY, Wang XF, Zhan YH, Deng SP, Qin YM. The relationship between fungiform papillae density and detection threshold for sucrose in the young males. Chem Senses. 2008; 34(1): 93–99. doi: 10.1093/chemse/bjn059 18854510
56. Perry RA, Mallan KM, Koo J, Mauch CE, Daniels LA, Magarey AM. Food neophobia and its association with diet quality and weight in children aged 24 months: a cross sectional study. Int J Behav Nutr Phys Act. 2015; 12: 13. doi: 10.1186/s12966-015-0184-6 25889280
57. Knaapila A, Silventoinen K, Broms U, Rose RJ, Perola M, Kaprio J, et al. Food neophobia in young adults: genetic architecture and relation to personality, pleasantness and use frequency of foods, and body mass index—a twin study. Behav Genet. 2011; 41(4): 512–521. doi: 10.1007/s10519-010-9403-8 20953688
58. Coulthard H, Blissett J. Fruit and vegetable consumption in children and their mothers. Moderating effects of child sensory sensitivity. Appetite. 2009; 52(2): 410–415. doi: 10.1016/j.appet.2008.11.015 19110019
59. Laureati M, Spinelli S, Monteleone E, Dinnella C, Prescott J, Cattaneo C, et al. Associations between food neophobia and responsiveness to “warning” chemosensory sensations in food products in a large population sample. Food Qual Prefer. 2018; 68: 113–124.
60. Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, et al. A core gut microbiome in obese and lean twins. Nature. 2009; 457(7228): 480–484. doi: 10.1038/nature07540 19043404
61. Le Chatelier E, Nielsen T, Qin J, Prifti E, Hildebrand F, Falony G, et al. Richness of human gut microbiome correlates with metabolic markers. Nature. 2013; 500(7464): 541–546. doi: 10.1038/nature12506 23985870
62. Ai D, Huang R, Wen J, Li C, Zhu J, Xia LC. Integrated metagenomic data analysis demonstrates that a loss of diversity in oral microbiota is associated with periodontitis. BMC genomics. 2017; 18(1): 1041.
63. Simón-Soro A, Belda-Ferre P, Cabrera-Rubio R, Alcaraz LD, Mira A. A tissue-dependent hypothesis of dental caries. Caries Res. 2013; 47(6): 591–600. doi: 10.1159/000351663 24080530
64. Wu Y, Chi X, Zhang Q, Chen F, Deng X. Characterization of the salivary microbiome in people with obesity. PeerJ, 2018; 6: e4458. doi: 10.7717/peerj.4458 29576948
65. Zeigler CC, Persson GR, Wondimu B, Marcus C, Sobko T, Modéer T. Microbiota in the Oral Subgingival Biofilm Is Associated With Obesity in Adolescence. Obesity. 2012; 20: 157–164. doi: 10.1038/oby.2011.305 21996660
66. Janem WF, Scannapieco FA, Sabharwal A, Tsompana M, Berman HA, Haase EM, et al. Salivary inflammatory markers and microbiome in normoglycemic lean and obese children compared to obese children with type 2 diabetes. PLoS One. 2017; 12(3): e0172647. doi: 10.1371/journal.pone.0172647 28253297
67. Shetty V, Hegde AM. PROP test: prediction of caries risk by genetic taste perception among the visually impaired children. Spec Care Dentist. 2014; 34(1): 34–40. doi: 10.1111/j.1754-4505.2012.00307.x 24382369
68. Feng Y, Licandro H, Martin C, Septier C, Zhao M, Neyraud E, Morzel M. The associations between biochemical and microbiological variables and taste differ in whole saliva and in the film lining the tongue. BioMed Res Int. 2018.
Článek vyšel v časopise
PLOS One
2019 Číslo 9
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Je libo čepici místo mozkového implantátu?
- Pomůže v budoucnu s triáží na pohotovostech umělá inteligence?
- AI může chirurgům poskytnout cenná data i zpětnou vazbu v reálném čase
- Nová metoda odlišení nádorové tkáně může zpřesnit resekci glioblastomů
Nejčtenější v tomto čísle
- Graviola (Annona muricata) attenuates behavioural alterations and testicular oxidative stress induced by streptozotocin in diabetic rats
- CH(II), a cerebroprotein hydrolysate, exhibits potential neuro-protective effect on Alzheimer’s disease
- Comparison between Aptima Assays (Hologic) and the Allplex STI Essential Assay (Seegene) for the diagnosis of Sexually transmitted infections
- Assessment of glucose-6-phosphate dehydrogenase activity using CareStart G6PD rapid diagnostic test and associated genetic variants in Plasmodium vivax malaria endemic setting in Mauritania
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy