#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Comparative compositional and functional analyses of Bothrops moojeni specimens reveal several individual variations


Autoři: Weslei da Silva Aguiar aff001;  Nathália da Costa Galizio aff001;  Caroline Serino-Silva aff001;  Sávio Stefanini Sant’Anna aff001;  Kathleen Fernandes Grego aff001;  Alexandre Keiji Tashima aff003;  Erika Sayuri Nishiduka aff003;  Karen de Morais-Zani aff001;  Anita Mitico Tanaka-Azevedo aff001
Působiště autorů: Laboratório de Herpetologia, Instituto Butantan, São Paulo, Brasil aff001;  Interunidades em Biotecnologia, Universidade de São Paulo, Instituto de Pesquisas Tecnológicas, Instituto Butantan, São Paulo, Brasil aff002;  Departamento de Bioquímica, Universidade Federal de São Paulo, São Paulo, Brasil aff003
Vyšlo v časopise: PLoS ONE 14(9)
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pone.0222206

Souhrn

Snake venoms are complex protein mixtures with different biological activities that can act in both their preys and human victims. Many of these proteins play a role in prey capture and in the digestive process of these animals. It is known that some snakes are resistant to the toxicity of their own venom by mechanisms not yet fully elucidated. However, it was observed in the Laboratory of Herpetology of Instituto Butantan that some Bothrops moojeni individuals injured by the same snake species showed mortalities caused by envenoming effects. This study analyzed the biochemical composition of 13 venom and plasma samples from Bothrops moojeni specimens to assess differences in their protein composition. Application of sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) showed distinct venom protein profiles, but very homogeneous plasma profiles. Western Blotting (WB) was performed with plasma samples, which were submitted to incubation with the respective venom. Some individuals showed an immunorecognized band zone around 25 kDa, indicating interaction between the same individual plasma and venom proteins. Crossed-WB assay using non-self-plasma and venom showed that this variability is due to venom protein composition instead of plasma composition. These venoms presented higher caseinolytic, collagenolytic and coagulant activities than the venoms without these regions recognized by WB. Mass spectrometry analyses performed on two individuals revealed that these individuals present, in addition to higher protein concentrations, other exclusive proteins in their composition. When these same two samples were tested in vivo, the results also showed higher lethality in these venoms, but lower hemorrhagic activity than in the venoms without these regions recognized by WB. In conclusion, some Bothrops moojeni specimens differ in venom composition, which may have implications in envenomation. Moreover, the high individual venom variability found in this species demonstrates the importance to work with individual analyses in studies involving intraspecific venom variability and venom evolution.

Klíčová slova:

Biology and life sciences – Toxicology – Toxic agents – Toxins – Venoms – Organisms – Eukaryota – Animals – Vertebrates – Amniotes – Reptiles – Squamates – Snakes – Anatomy – Body fluids – Blood – Blood plasma – Physiology – Biochemistry – Proteins – Plasma proteins – Serine proteases – Enzymology – Enzymes – Proteases – Medicine and health sciences – Pathology and laboratory medicine – Hemorrhage – Diagnostic medicine – Signs and symptoms – Vascular medicine – Tropical diseases – Neglected tropical diseases – Snakebite


Zdroje

1. Kellaway CH. The Immunity of Australian Snakes to Their Own Venoms. Vol. 2, The Medical Journal of Australia. 1931. p. 35–52.

2. Mackessy SP. Fractionation of red diamond rattlesnake (Crotalus ruber ruber) venom: protease, phosphodiesterase, L-amino acid oxidase activities and effects of metal ions and inhibitors on protease activity. Toxicon. 1985;23(2):337–40. 2992122

3. Noguchi H. Natural immunity of certain animals from snake venom. In: Snake Venom. ed. Washington D. C.: Carnegie Institute; 1909. p. 268.

4. White J, Meier J. Handbook of clinical toxicology of animal venoms and poisons. Vol. 236. CRC Press; 1995.

5. Bordon KCF, Wiezel GA, Cabral H, Arantes EC. Bordonein-L, a new L-amino acid oxidase from Crotalus durissus terrificus snake venom: isolation, preliminary characterization and enzyme stability. J Venom Anim Toxins Incl Trop Dis. 2015;21:0.

6. Mamede CCN, de Sousa BB, da Cunha Pereira DF, Matias MS, de Queiroz MR, de Morais NCG, et al. Comparative analysis of local effects caused by Bothrops alternatus and Bothrops moojeni snake venoms: enzymatic contributions and inflammatory modulations. Toxicon. 2016;117:37–45. doi: 10.1016/j.toxicon.2016.03.006 26975252

7. Marcussi S, Stábeli RG, Santos-Filho NA, Menaldo DL, Pereira LLS, Zuliani JP, et al. Genotoxic effect of Bothrops snake venoms and isolated toxins on human lymphocyte DNA. Toxicon. 2013;65:9–14. doi: 10.1016/j.toxicon.2012.12.020 23333649

8. Menez A. Perspectives in molecular toxinology. John Wiley & Sons; 2002.

9. Ribeiro de Queiroz M, Mamede CCN, de Morais NCG, Cortes Fonseca K, Barbosa de Sousa B, Migliorini TM, et al. Purification and characterization of BmooAi: a new toxin from Bothrops moojeni snake venom that inhibits platelet aggregation. Biomed Res Int. 2014;2014.

10. Fox JW, Serrano SMT. Structural considerations of the snake venom metalloproteinases, key members of the M12 reprolysin family of metalloproteinases. Toxicon. 2005;45(8):969–85. 15922769

11. Fry BG. From genome to “venome”: molecular origin and evolution of the snake venom proteome inferred from phylogenetic analysis of toxin sequences and related body proteins. Genome Res [Internet]. 2005 Mar [cited 2014 Dec 1];15(3):403–20. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=551567&tool=pmcentrez&rendertype=abstract doi: 10.1101/gr.3228405 15741511

12. Ohno M, Menez R, Ogawa T, Danse JM, Shimohigashi Y, Fromen C, et al. Molecular Evolution of Snake Toxins: Is the Functional Diversify of Snake Toxins Associated with a Mechanism of Accelerated Evolution? Prog Nucleic Acid Res Mol Biol. 1997;59:307–64.

13. Nobuhisa I, Inamasu S, Nakai M, I AT, Mimori T, Ogawa T, et al. Characterization and evolution of a gene encoding a Trimeresurus fzavoviridis serum protein that inhibits basic phospholipase A, isozymes in the snake ‘ s venom. Eur J Biochem. 1997;845:838–45.

14. Gibbs HL, Sanz L, Chiucchi JE, Farrell TM, Calvete JJ. Proteomic analysis of ontogenetic and diet-related changes in venom composition of juvenile and adult Dusky Pigmy rattlesnakes (Sistrurus miliarius barbouri). J Proteomics. 2011;74(10):2169–79. doi: 10.1016/j.jprot.2011.06.013 21722760

15. Chippaux J-P, Williams V, White J. Snake venom variability: methods of study, results and interpretation. Toxicon. 1991;29(11):1279–303. 1814005

16. Massey DJ, Calvete JJ, Sánchez EE, Sanz L, Richards K, Curtis R, et al. Venom variability and envenoming severity outcomes of the Crotalus scutulatus scutulatus (Mojave rattlesnake) from Southern Arizona. J Proteomics. 2012;75(9):2576–87. doi: 10.1016/j.jprot.2012.02.035 22446891

17. Pla D, Sanz L, Sasa M, Acevedo ME, Dwyer Q, Durban J, et al. Proteomic analysis of venom variability and ontogeny across the arboreal palm-pitvipers (genus Bothriechis). J Proteomics. 2017;152:1–12. doi: 10.1016/j.jprot.2016.10.006 27777178

18. de Morais-Zani K, Grego KF, Tanaka AS, Tanaka-Azevedo AM. Proteomic analysis of the ontogenetic variability in plasma composition of juvenile and adult Bothrops jararaca snakes. Int J Proteomics. 2013;2013.

19. Alape-Girón A, Sanz L, Escolano J, Flores-Díaz M, Madrigal M, Sasa M, et al. Snake venomics of the lancehead pitviper Bothrops asper: geographic, individual, and ontogenetic variations. J Proteome Res. 2008;7(8):3556–71. doi: 10.1021/pr800332p 18557640

20. Menezes MC, Furtado MF, Travaglia-Cardoso SR, Camargo ACM, Serrano SMT. Sex-based individual variation of snake venom proteome among eighteen Bothrops jararaca siblings. Toxicon. 2006;47(3):304–12. 16373076

21. Zelanis A, Tashima AK, Rocha MMT, Furtado MF, Camargo ACM, Ho PL, et al. Analysis of the ontogenetic variation in the venom proteome/peptidome of Bothrops jararaca reveals different strategies to deal with prey. J Proteome Res. 2010;9(5):2278–91. doi: 10.1021/pr901027r 20146532

22. Fontana F. Traité sur le vénin de la vipere sur les poisons americains sur le laurier-cerise et sur quelques autres poisons végetaux: on y a joint des observations sur la structure primitive du corps animal. Differentes expériences sur la reproduction des nerfs et l. Vol. 1. chez Nyon l’Ainé; 1781.

23. Guyon J. Le Venin de Serpents Exerce-t-il sur Eux-mêmes l’Action Qu’il Exerce sur D’autres Animaux. Animaux Venimeux Venins La Fonct Venimeuse chez tous les Animaux; les Appar Venimeux. 1861;744.

24. Phisalix C, Bertrand G. Recherches sur l’immunité du hérisson contre le venin de vipère. CR Soc Biol. 1895;47(10):639–41.

25. Poran NS, Coss RG, Benjamini ELI. Resistance of California ground squirrels (Spermophilus beecheyi) to the venom of the northern Pacific rattlesnake (Crotalus viridis oreganus): a study of adaptive variation. Toxicon. 1987;25(7):767–77. 3672545

26. Voss RS, Jansa SA. Snake‐venom resistance as a mammalian trophic adaptation: lessons from didelphid marsupials. Biol Rev. 2012;87(4):822–37. doi: 10.1111/j.1469-185X.2012.00222.x 22404916

27. Jansa SA, Voss RS. Adaptive evolution of the venom-targeted vWF protein in opossums that eat pitvipers. PLoS One. 2011;6(6):e20997. doi: 10.1371/journal.pone.0020997 21731638

28. Ohana B, Fraenkelgl Y, Gershonit M. Molecular dissection of cholinergic binding sites: How do snakes escape the effect of their own toxins? 1991;179(1):648–54. 1883386

29. Burden SJ, Hartzell HC, Yoshikami D. Acetylcholine receptors at neuromuscular synapses: phylogenetic differences detected by snake alpha-neurotoxins. Proc Natl Acad Sci. 1975;72(8):3245–9. doi: 10.1073/pnas.72.8.3245 1081230

30. Gomes CM, Morais-Zani K de, Lu S, Buarque D de S, Braz GRC, Grego KF, et al. Differential transcript profile of inhibitors with potential anti-venom role in the liver of juvenile and adult Bothrops jararaca snake. PeerJ. 2017;5:e3203. doi: 10.7717/peerj.3203 28462021

31. Saúde M da S (BR). S de V em SP. Guia de Vigilância em Saúde—Volume Único. [Internet]. Brasília: Ministério da Saúde de Brasília; 2017. p. 705p. Available from: http://bvsms.saude.gov.br/publicacoes/guia_vigilancia_saude_2ed.pdf

32. BRASIL. Ministério da Saúde—FUNASA. Manual de Diagnóstico e Tratamento de Acidentes por Animais Peçonhentos. 2° ed. Brasília; 2001.

33. Serino-Silva C, Morais-Zani K, Toyama MH, de Oliveira Toyama D, Gaeta HH, Rodrigues CFB, et al. Purification and characterization of the first γ-phospholipase inhibitor (γPLI) from Bothrops jararaca snake serum. PLoS One. 2018;13(3):e0193105. doi: 10.1371/journal.pone.0193105 29505564

34. Tanaka-Azevedo AM, Tanaka AS, Sano-Martins IS. A new blood coagulation inhibitor from the snake Bothrops jararaca plasma: isolation and characterization. Biochem Biophys Res Commun [Internet]. 2003 Sep 5 [cited 2014 Dec 17];308(4):706–12. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12927776 12927776

35. Tanaka-Azevedo AM, Torquato RJS, Tanaka AS, Sano-Martins IS. Characterization of Bothrops jararaca coagulation inhibitor (BjI) and presence of similar protein in plasma of other animals. Toxicon. 2004;44(3):289–94. 15302535

36. WHO (World Health Organization). Manual of the international statistical classification of diseases, injuries, and causes of death. Sixth revision. 1949.

37. Dutra NC, Telles MP, Dutra DL, Silva Júnior NJ. Genetic diversity in populations of the viper Bothrops moojeni Hoge, 1966 in Central Brazil using RAPD markers. Genet Mol Res. 2008;7(3):603–13. 18752187

38. Amorim FG, Costa TR, Baiwir D, De Pauw E, Quinton L, Sampaio SV. Proteopeptidomic, Functional and Immunoreactivity Characterization of Bothrops moojeni Snake Venom: Influence of Snake Gender on Venom Composition. Toxins (Basel). 2018;10(5):177.

39. Santoro ML, Sano-Martins IS, Fan HW, Cardoso JLC, Theakston RDG, Warrell DA. Haematological evaluation of patients bitten by the jararaca, Bothrops jararaca, in Brazil. Toxicon. 2008;51(8):1440–8. doi: 10.1016/j.toxicon.2008.03.018 18471839

40. Bradford MM, Dourado DM, Matias R, Barbosa-Ferreira M, da Silva BAK, Muller J de AI, et al. Proteopeptidomic, Functional and Immunoreactivity Characterization of Bothrops moojeni Snake Venom: Influence of Snake Gender on Venom Composition. Toxins (Basel) [Internet]. 2008 Jul [cited 2014 Dec 17];32(1):1357–66. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18620721

41. Soares AM, Marcussi S, Stábeli RG, França SC, Giglio JR, Ward RJ, et al. Structural and functional analysis of BmjMIP, a phospholipase A 2 myotoxin inhibitor protein from Bothrops moojeni snake plasma. Biochem Biophys Res Commun. 2003;302(2):193–200. 12604331

42. de Farias IB, de Morais-Zani K, Serino-Silva C, Sant’Anna SS, da Rocha MMT, Grego KF, et al. Functional and proteomic comparison of Bothrops jararaca venom from captive specimens and the Brazilian Bothropic Reference Venom. J Proteomics. 2018;174:36–46. doi: 10.1016/j.jprot.2017.12.008 29275044

43. Bradford MM. Bradford, M. M. Anal Biochem. 1976;72:248. 942051

44. LAEMMLI UK. Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4. Nature [Internet]. 1970 Aug 15 [cited 2014 Jul 10];227(5259):680–5. Available from: http://dx.doi.org/10.1038/227680a0 5432063

45. Hanna SL, Sherman NE, Kinter MT, Goldberg JB. Comparison of proteins expressed by Pseudomonas aeruginosa strains representing initial and chronic isolates from a cystic fibrosis patient: an analysis by 2-D gel electrophoresis and capillary column liquid chromatography–tandem mass spectrometry. Microbiology. 2000;146(10):2495–508.

46. de Silva AP. Analytical chemistry: sense and versatility. Nature. 2007;445(7129):718. 17301777

47. Pedroso AP, Souza AP, Dornellas APS, Oyama LM, Nascimento CMO, Santos GMS, et al. Intrauterine growth restriction programs the hypothalamus of adult male rats: integrated analysis of proteomic and metabolomic data. J Proteome Res. 2017;16(4):1515–25. doi: 10.1021/acs.jproteome.6b00923 28314371

48. Abreu TF, Sumitomo BN, Nishiyama MY Jr, Oliveira UC, Souza GHMF, Kitano ES, et al. Peptidomics of Acanthoscurria gomesiana spider venom reveals new toxins with potential antimicrobial activity. J Proteomics. 2017;151:232–42. doi: 10.1016/j.jprot.2016.07.012 27436114

49. Distler U, Kuharev J, Navarro P, Tenzer S. Label-free quantification in ion mobility-enhanced data-independent acquisition proteomics. Nat Protoc. 2016 Apr;11(4):795–812. doi: 10.1038/nprot.2016.042 27010757

50. Silva JC, Gorenstein M V, Li G-Z, Vissers JPC, Geromanos SJ. Absolute quantification of proteins by LCMSE a virtue of parallel MS acquisition. Mol Cell Proteomics. 2006;5(1):144–56. 16219938

51. Perez-Riverol Y, Csordas A, Bai J, Bernal-Llinares M, Hewapathirana S, Kundu DJ, et al. The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res. 2018;47(D1):D442–50.

52. Harlow E, Lane D. Antibodies: A Laboratory Manual [Internet]. 1988 [cited 2015 May 4]. Available from: http://books.google.com.br/books/about/Antibodies.html?id=0p29pFaLwR8C&pgis=1

53. Váchová L, Moravcová J. Two microassays for determination of a wide range of proteolytic activities using Azocoll as substrate. Biochem Mol Biol Int. 1993;30(2):311–8. 8364412

54. Antunes TC, Yamashita KM, Barbaro KC, Saiki M, Santoro ML. Comparative analysis of newborn and adult Bothrops jararaca snake venoms. Toxicon. 2010;56(8):1443–58. doi: 10.1016/j.toxicon.2010.08.011 20816886

55. Holzer M, Mackessy SP. An aqueous endpoint assay of snake venom phospholipase A2. Toxicon [Internet]. 1996 Oct [cited 2014 Dec 18];34(10):1149–55. Available from: http://www.ncbi.nlm.nih.gov/pubmed/8931255 8931255

56. Kishimoto M, Takahashi T. A spectrophotometric microplate assay for L-amino acid oxidase. Anal Biochem. 2001;298(1):136–9. 11673909

57. Theakston RDG, Reid HA. Development of simple standard assay procedures for the characterization of snake venoms. Bull World Health Organ [Internet]. 1983 Jan [cited 2014 Dec 18];61(6):949–56. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2536230&tool=pmcentrez&rendertype=abstract 6609011

58. Kondo H, Kondo S, Kezawa H, Murata R, Ohsaka A. Studies on the quantitative method for determination of hemorrhagic activity of Habu snake venom. Japanese J Med Sci Biol. 1960;13(1–2):43–51.

59. Gutiérrez J, Gené J, Rojas G, Cerdas L. Neutralization of proteolytic and hemorrhagic activities of Costa Rican snake venoms by a polyvalent antivenom. Toxicon. 1985;23(6):887–93. 3913055

60. Silles Villarroel M. Padronização da Titulação da Atividade Tóxica de Venenos Botrópicos em camundongos. Mem Inst Butantan. 1978;42:311–23.

61. Finney DJ. Probit Analysis: 3d Ed. Cambridge University Press; 1971.

62. Valente RH, Dragulev B, Perales J, Fox JW, Domont GB. BJ46a, a snake venom metalloproteinase inhibitor. Isolation, characterization, cloning and insights into its mechanism of action. Eur J Biochem [Internet]. 2001 May [cited 2014 Dec 17];268(10):3042–52. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11358523 11358523

63. McCleary RJR, Sridharan S, Dunstan NL, Mirtschin PJ, Kini RM. Proteomic comparisons of venoms of long-term captive and recently wild-caught Eastern brown snakes (Pseudonaja textilis) indicate venom does not change due to captivity. J Proteomics. 2016;144:51–62. doi: 10.1016/j.jprot.2016.05.027 27240975

64. Perchuc AM, Menin L, Stöcklin R, Bühler B, Schöni R. The Potential of Bothrops moojeni Venom in the Field of Hemostasis. Pathophysiol Haemost Thromb. 2005;34(4–5):241–5. 16707935

65. Zelanis A, Menezes MC, Kitano ES, Liberato T, Tashima AK, Pinto AFM, et al. Proteomic identification of gender molecular markers in Bothrops jararaca venom. J Proteomics. 2016;139:26–37. doi: 10.1016/j.jprot.2016.02.030 26941108

66. Nicolau CA, Carvalho PC, Junqueira-de-Azevedo ILM, Teixeira-Ferreira A, Junqueira M, Perales J, et al. An in-depth snake venom proteopeptidome characterization: Benchmarking Bothrops jararaca. J Proteomics. 2016;

67. Harris JB, Scott-davey T. Secreted Phospholipases A2 of Snake Venoms: Effects on the Peripheral Neuromuscular System with Comments on the Role of Phospholipases A2 in Disorders of the CNS and Their Uses in Industry. 2013;2533–71. doi: 10.3390/toxins5122533 24351716

68. Richards DP, Barlow A, Wüster W. Toxicon Venom lethality and diet: Differential responses of natural prey and model organisms to the venom of the saw-scaled vipers (Echis). Toxicon [Internet]. 2012;59(1):110–6. Available from: doi: 10.1016/j.toxicon.2011.10.015 22079297

69. Prior KA, Gibbs HL, Weatherhead PJ. Population genetic structure in the black rat snake: implications for management. Conserv Biol. 1997;11(5):1147–58.

70. Melgarejo AR, Cardoso JLC, França FOS. Serpentes peçonhentas do Brasil. Cardoso, LC al Animais Peçonhentos no Bras Biol clínica e Ter dos Acid São Paulo Savier. 2003;33–61.

71. Andrade D V, Abe AS, Dos Santos MC. Is the venom related to diet and tail color during Bothrops moojeni ontogeny? J Herpetol. 1996;285–8.

72. Queiroz GP, Pessoa LA, Portaro FC V, Maria de Fátima DF, Tambourgi D V. Interspecific variation in venom composition and toxicity of Brazilian snakes from Bothrops genus. Toxicon. 2008;52(8):842–51. doi: 10.1016/j.toxicon.2008.10.002 18983867

73. Sousa LF, Nicolau CA, Peixoto PS, Bernardoni JL, Oliveira SS, Portes-Junior JA, et al. Comparison of phylogeny, venom composition and neutralization by antivenom in diverse species of bothrops complex. PLoS Negl Trop Dis. 2013;7(9):e2442. doi: 10.1371/journal.pntd.0002442 24069493

74. Zancolli G, Sanz L, Calvete JJ, Wüster W. Venom On-a-Chip: A Fast and Efficient Method for Comparative Venomics. Toxins (Basel). 2017;9(6):179.

75. Pereira AZP. Análise da variabilidade ontogenética do veneno de Bothrops insularis (Amaral, 1921): implicações adaptativas aos itens alimentares. Inst Biociências, Dep Fisiol [Internet]. 2006;104. Available from: file:///C:/Documents and Settings/Biblio_Herpeto/My Documents/Banco de dados Mendeley/V.1.2/Pereira/2006/Pereira_2006.pdf

76. Calvete JJ, Sanz L, Pérez A, Borges A, Vargas AM, Lomonte B, et al. Snake population venomics and antivenomics of Bothrops atrox: Paedomorphism along its transamazonian dispersal and implications of geographic venom variability on snakebite management. J Proteomics. 2011;74(4):510–27. doi: 10.1016/j.jprot.2011.01.003 21278006

77. Soares AM, Rodrigues VM, Homsi-Brandeburgo MI, Toyama MH, Lombardi FR, Arni RK, et al. A rapid procedure for the isolation of the Lys-49 myotoxin II from Bothrops moojeni (caissaca) venom: biochemical characterization, crystallization, myotoxic and edematogenic activity. Toxicon. 1998;36(3):503–14. 9637370

78. de Roodt AR, Litwin S, Vidal JC. Hemorrhagic activity of Bothrops venoms determined by two different methods and relationship with proteolytic activity on gelatin and lethality. Toxicon. 2003;41(8):949–58. 12875868

79. Assakura MT, Reichl AP, Asperti MCA, Mandelbaum FR. Isolation of the major proteolytic enzyme from the venom of the snake Bothrops moojeni (caissaca). Toxicon. 1985;23(4):691–706. 3933145

80. Campos LB, Pucca MB, Roncolato EC, Bertolini TB, Netto JC, Barbosa JE. In vitro comparison of enzymatic effects among Brazilian Bothrops spp. venoms. Toxicon. 2013;76:1–10. doi: 10.1016/j.toxicon.2013.08.063 23998940

81. Bregge-Silva C, Nonato MC, de Albuquerque S, Ho PL, de Azevedo ILMJ, Diniz MRV, et al. Isolation and biochemical, functional and structural characterization of a novel L-amino acid oxidase from Lachesis muta snake venom. Toxicon. 2012;60(7):1263–76. doi: 10.1016/j.toxicon.2012.08.008 22963728

82. Izidoro LFM, Sobrinho JC, Mendes MM, Costa TR, Grabner AN, Rodrigues VM, et al. Snake venom l-amino acid oxidases: trends in pharmacology and biochemistry. Biomed Res Int. 2014;2014.

83. Naumann GB, Silva LF, Silva L, Faria G, Richardson M, Evangelista K, et al. Cytotoxicity and inhibition of platelet aggregation caused by an l-amino acid oxidase from Bothrops leucurus venom. Biochim Biophys Acta (BBA)-General Subj. 2011;1810(7):683–94.

84. Souza DHF, Eugenio LM, Fletcher JE, Jiang M-S, Garratt RC, Oliva G, et al. Isolation and structural characterization of a cytotoxic L-amino acid oxidase from Agkistrodon contortrix laticinctus snake venom: preliminary crystallographic data. Arch Biochem Biophys. 1999;368(2):285–90. 10441379

85. Gutiérrez J, Lomonte B. Phospholipase A 2 myotoxins from Bothrops snake venoms. Toxicon. 1995;33(11):1405–24. 8744981

86. Gutiérrez JM, Rucavado A. Snake venom metalloproteinases: their role in the pathogenesis of local tissue damage. Biochimie. 2000;82(9):841–50.

87. Ownby CL. Structure, function and biophysical aspects of the myotoxins from snake venoms. Toxin Rev. 1998;17(2):213–38.

88. Sousa L, Zdenek C, Dobson J, Coimbra F, Gillett A, Del-Rei T, et al. Coagulotoxicity of Bothrops (lancehead pit-vipers) venoms from Brazil: differential biochemistry and antivenom efficacy resulting from prey-driven venom variation. Toxins (Basel). 2018;10(10):411.

89. Zhang Y. Why do we study animal toxins? Zool Res. 2015;36(4):183. doi: 10.13918/j.issn.2095-8137.2015.4.183 26228472

90. World Health Organization WHO. WHO guidelines for the production, control and regulation of snake antivenom immunoglobulins. Geneva WHO. 2010;134.

91. Hatakeyama DM, de Morais-Zani K, Serino-Silva C, Grego KF, Sant’Anna SS, Fernandes W, et al. Examination of biochemical and biological activities of Bothrops jararaca (Serpentes: Viperidae; Wied-Neuwied 1824) snake venom after up to 54 years of storage. Toxicon. 2018;141:34–42. doi: 10.1016/j.toxicon.2017.11.011 29179989

92. Silva-de-França F, Villas-Boas IM, de Toledo Serrano SM, Cogliati B, de Andrade Chudzinski SA, Lopes PH, et al. Naja annulifera Snake: New insights into the venom components and pathogenesis of envenomation. PLoS Negl Trop Dis. 2019;13(1):e0007017. doi: 10.1371/journal.pntd.0007017 30657756

93. Sanchez EF, Freitas T V, Ferreira-Alves DL, Velarde DT, Diniz MR, Cordeiro MN, et al. Biological activities of venoms from South American snakes. Toxicon. 1992;30(1):95–103. 1595082

94. Tanaka GD, Maria de Fátima DF, Portaro FC V, Sant’Anna OA, Tambourgi D V. Diversity of Micrurus snake species related to their venom toxic effects and the prospective of antivenom neutralization. PLoS Negl Trop Dis. 2010;4(3):e622. doi: 10.1371/journal.pntd.0000622 20231886

95. Saldarriaga MM, Otero R, Núñez V, Toro MF, Díaz A, Gutiérrez JM. Ontogenetic variability of Bothrops atrox and Bothrops asper snake venoms from Colombia. Toxicon. 2003;42(4):405–11. 14505941


Článek vyšel v časopise

PLOS One


2019 Číslo 9
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

plice
INSIGHTS from European Respiratory Congress
nový kurz

Současné pohledy na riziko v parodontologii
Autoři: MUDr. Ladislav Korábek, CSc., MBA

Svět praktické medicíny 3/2024 (znalostní test z časopisu)

Kardiologické projevy hypereozinofilií
Autoři: prof. MUDr. Petr Němec, Ph.D.

Střevní příprava před kolonoskopií
Autoři: MUDr. Klára Kmochová, Ph.D.

Všechny kurzy
Kurzy Podcasty Doporučená témata Časopisy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#