Quadriceps muscle strength is a discriminant predictor of dependence in daily activities in nursing home residents
Autoři:
Julia Wearing aff001; Maria Stokes aff002; Eling D. de Bruin aff003
Působiště autorů:
Faculty of Health, Medicine and Sciences, School for Public Health and Primary Care, University Maastricht, Maastricht, The Netherlands
aff001; School of Health Sciences, University of Southampton, Southampton, United Kingdom
aff002; Institute of Human Movement Sciences and Sport (IBWS), Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
aff003
Vyšlo v časopise:
PLoS ONE 14(9)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0223016
Souhrn
Objective
This study aimed to explore the relationship between dependence in Activities of Daily Living and muscle strength, muscle morphology and physical function in older nursing home residents, taking possible confounders into consideration.
Methods
A total of 30 nursing home residents (age, 85.6±7.1 years) were included in this observational cross-sectional study. Performance of basic Activities of Daily Living (ADL) was assessed with the Resident Assessment Instrument and categorized as either independent or dependent. Isometric grip, quadriceps and elbow-flexor strength were determined by hand-dynamometry, muscle thickness and echo intensity by B-mode ultrasonography, a sit-to-stand task by using a stop watch and physical activity by the German-Physical-Activity Questionnaire. Degree of frailty was evaluated according to Fried’s frailty criteria, whereas cognition, depression, incontinence, pain and falls were part of the Resident Assessment Instrument.
Results
Dependence in Activities of Daily Living was negatively correlated with physical activity (rs = -0.44, p = .015), handgrip (rs = -0.38, p = .038), elbow-flexor (rs = -0.42, p = .032) and quadriceps strength (rs = -0.67, p < .001), analysed by Spearman’s correlation. Chronic diseases (rs = -0.41, p = .027) and incontinence (rs = -0.39, p = .037) were positively correlated with ADL while the other variables were not related. Only quadriceps strength remained significant with logistic regression (Wald(1) = 4.7, p = .03), when chronic diseases, quadriceps and handgrip strength were considered (R2 .79). 11 kg was the best fitting value in this sample to predict performance in Activities of Daily Living, evaluated with Receiver-Operating Characteristic analysis, with a sensitivity of 100% and a specificity of 79%.
Conclusion and implication
Quadriceps strength had a positive independent relationship with performance in ADL in the nursing home residents studied. Although a large prospective study is needed to verify the results, maintaining quadriceps strength above 11 kg may be helpful in retaining independence in this cohort.
Klíčová slova:
Activities of daily living – Elderly – Hand strength – Incontinence – Nursing homes – Physical activity – Muscle functions – Myalgia
Zdroje
1. bfs. Gesundheit im Alter https://www.bfs.admin.ch/bfs/de/home/statistiken/gesundheit/gesundheitszustand/alter.html: Bundesamt für Statistik; 2017 [cited 2019 January 21].
2. Crimmins EM. Lifespan and Healthspan: Past, Present, and Promise. Gerontologist. 2015;55(6):901–11. doi: 10.1093/geront/gnv130 26561272.
3. Kontis V, Bennett JE, Mathers CD, Li G, Foreman K, Ezzati M. Future life expectancy in 35 industrialised countries: projections with a Bayesian model ensemble. Lancet. 2017;389(10076):1323–35. doi: 10.1016/S0140-6736(16)32381-9 28236464.
4. United Nations DoEaSA. World Population Ageing2017 January 21, 2019:[2–42 pp.].
5. Luppa M, Luck T, Weyerer S, Konig HH, Brahler E, Riedel-Heller SG. Prediction of institutionalization in the elderly. A systematic review. Age Ageing. 2010;39(1):31–8. doi: 10.1093/ageing/afp202 19934075.
6. Jerez-Roig J, de Brito Macedo Ferreira LM, Torres de Araujo JR, Costa Lima K. Functional decline in nursing home residents: A prognostic study. PLoS One. 2017;12(5):e0177353 (1–14). doi: 10.1371/journal.pone.0177353 28493946.
7. Laffon de Mazieres C, Morley JE, Levy C, Agenes F, Barbagallo M, Cesari M, et al. Prevention of Functional Decline by Reframing the Role of Nursing Homes? J Am Med Dir Assoc. 2017;18(2):105–10. doi: 10.1016/j.jamda.2016.11.019 28126135.
8. Luleci E, Hey W, Subasi F. Assessing selected quality of life factors of nursing home residents in Turkey. Arch Gerontol Geriatr. 2008;46(1):57–66. doi: 10.1016/j.archger.2007.02.007 17433462.
9. Lane NE, Wodchis WP, Boyd CM, Stukel TA. Disability in long-term care residents explained by prevalent geriatric syndromes, not long-term care home characteristics: a cross-sectional study. BMC Geriatr. 2017;17(1):49. doi: 10.1186/s12877-017-0444-1 28183274.
10. Manini TM, Clark BC. Dynapenia and aging: an update. J Gerontol A Biol Sci Med Sci. 2012;67(1):28–40. Epub 2011/03/30. doi: 10.1093/gerona/glr010 21444359.
11. Akima H, Kano Y, Enomoto Y, Ishizu M, Okada M, Oishi Y, et al. Muscle function in 164 men and women aged 20–84 yr. Med Sci Sports Exerc. 2001;33(2):220–6. doi: 10.1097/00005768-200102000-00008 11224809.
12. Bamman MM, Clarke MS, Feeback DL, Talmadge RJ, Stevens BR, Lieberman SA, et al. Impact of resistance exercise during bed rest on skeletal muscle sarcopenia and myosin isoform distribution. Journal of applied physiology. 1998;84(1):157–63. doi: 10.1152/jappl.1998.84.1.157 9451630.
13. Volkers KM, de Kieviet JF, Wittingen HP, Scherder EJ. Lower limb muscle strength (LLMS): why sedentary life should never start? A review. Arch Gerontol Geriatr. 2012;54(3):399–414. doi: 10.1016/j.archger.2011.04.018 21601928.
14. Shen Y, Chen J, Chen X, Hou L, Lin X, Yang M. Prevalence and Associated Factors of Sarcopenia in Nursing Home Residents: A Systematic Review and Meta-analysis. J Am Med Dir Assoc. 2019;20(1):5–13. doi: 10.1016/j.jamda.2018.09.012 30409494.
15. Azegami M, Ohira M, Miyoshi K, Kobayashi C, Hongo M, Yanagihashi R, et al. Effect of single and multi-joint lower extremity muscle strength on the functional capacity and ADL/IADL status in Japanese community-dwelling older adults. Nurs Health Sci. 2007;9(3):168–76. doi: 10.1111/j.1442-2018.2007.00317.x 17688474.
16. Ploutz-Snyder LL, Manini T, Ploutz-Snyder RJ, Wolf DA. Functionally relevant thresholds of quadriceps femoris strength. J Gerontol A Biol Sci Med Sci. 2002;57(4):B144–52. doi: 10.1093/gerona/57.4.b144 11909879.
17. Hairi NN, Cumming RG, Naganathan V, Handelsman DJ, Le Couteur DG, Creasey H, et al. Loss of muscle strength, mass (sarcopenia), and quality (specific force) and its relationship with functional limitation and physical disability: the Concord Health and Ageing in Men Project. J Am Geriatr Soc. 2010;58(11):2055–62. doi: 10.1111/j.1532-5415.2010.03145.x 21054284.
18. Fiatarone MA, Marks EC, Ryan ND, Meredith CN, Lipsitz LA, Evans WJ. High-intensity strength training in nonagenarians. Effects on skeletal muscle. Jama. 1990;263(22):3029–34. 2342214.
19. Ota A, Ohta M, Nakamura Y, Fukunaga T, Muraoka I. Strength and Thickness of Knee Extensor Muscles in Frail Elderly People at Different Levels of Certified Care Need. International Journal of Sport and Health Science. 2008;6:91–7. doi: 10.5432/ijshs.6.91
20. Suzuki M, Kirimoto H, Inamura A, Yagi M, Omori Y, Yamada S. The relationship between knee extension strength and lower extremity functions in nursing home residents with dementia. Disabil Rehabil. 2012;34(3):202–9. doi: 10.3109/09638288.2011.593678 21962209.
21. Aguirre LE, Villareal DT. Physical Exercise as Therapy for Frailty. Nestle Nutr Inst Workshop Ser. 2015;83:83–92. doi: 10.1159/000382065 26524568.
22. Cadore EL, Casas-Herrero A, Zambom-Ferraresi F, Idoate F, Millor N, Gomez M, et al. Multicomponent exercises including muscle power training enhance muscle mass, power output, and functional outcomes in institutionalized frail nonagenarians. Age. 2014;36(2):773–85. doi: 10.1007/s11357-013-9586-z 24030238.
23. de Labra C, Guimaraes-Pinheiro C, Maseda A, Lorenzo T, Millan-Calenti JC. Effects of physical exercise interventions in frail older adults: a systematic review of randomized controlled trials. BMC Geriatr. 2015;15:154. doi: 10.1186/s12877-015-0155-4 26626157.
24. Krist L, Dimeo F, Keil T. Can progressive resistance training twice a week improve mobility, muscle strength, and quality of life in very elderly nursing-home residents with impaired mobility? A pilot study. Clin Interv Aging. 2013;8:443–8. doi: 10.2147/CIA.S42136 23637524.
25. Arrieta H, Rezola-Pardo C, Gil SM, Irazusta J, Rodriguez-Larrad A. Physical training maintains or improves gait ability in long-term nursing home residents: A systematic review of randomized controlled trials. Maturitas. 2018;109:45–52. doi: 10.1016/j.maturitas.2017.12.003 29452781.
26. Arrieta H, Rezola-Pardo C, Gil SM, Virgala J, Iturburu M, Anton I, et al. Effects of Multicomponent Exercise on Frailty in Long-Term Nursing Homes: A Randomized Controlled Trial. J Am Geriatr Soc. 2019;67(6):1145–51. doi: 10.1111/jgs.15824 30891748.
27. Morris JN, Fries BE, Mehr DR, Hawes C, Phillips C, Mor V, et al. MDS Cognitive Performance Scale. J Gerontol. 1994;49(4):M174–82. doi: 10.1093/geronj/49.4.m174 8014392.
28. von Elm E, Altman DG, Egger M, Pocock SJ, Gotzsche PC, Vandenbroucke JP, et al. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: guidelines for reporting observational studies. Int J Surg. 2014;12(12):1495–9. doi: 10.1016/j.ijsu.2014.07.013 25046131.
29. Arnold CM, Warkentin KD, Chilibeck PD, Magnus CR. The reliability and validity of handheld dynamometry for the measurement of lower-extremity muscle strength in older adults. Journal of strength and conditioning research / National Strength & Conditioning Association. 2010;24(3):815–24. doi: 10.1519/JSC.0b013e3181aa36b8 19661831.
30. Stark T, Walker B, Phillips JK, Fejer R, Beck R. Hand-held dynamometry correlation with the gold standard isokinetic dynamometry: a systematic review. PM R. 2011;3(5):472–9. doi: 10.1016/j.pmrj.2010.10.025 21570036.
31. Bohannon RW. Test-retest reliability of hand-held dynamometry during a single session of strength assessment. Physical therapy. 1986;66(2):206–9. doi: 10.1093/ptj/66.2.206 3945674.
32. Shechtman O, Sindhu BS. Grip Strength. In: ASTH, editor. Clinical Assessment Recommendations, 3rd edition2013.
33. Agyapong-Badu S, Warner M, Samuel D, Narici M, Cooper C, Stokes M. Anterior thigh composition measured using ultrasound imaging to quantify relative thickness of muscle and non-contractile tissue: a potential biomarker for musculoskeletal health. Physiological measurement. 2014;35(10):2165–76. doi: 10.1088/0967-3334/35/10/2165 25243984.
34. Delaney S, Worsley P, Warner M, Taylor M, Stokes M. Assessing contractile ability of the quadriceps muscle using ultrasound imaging. Muscle Nerve. 2010;42(4):530–8. doi: 10.1002/mus.21725 20665511.
35. Mechelli F, Arendt-Nielsen L, Stokes M, Agyapong-Badu S. Validity of Ultrasound Imaging Versus Magnetic Resonance Imaging for Measuring Anterior Thigh Muscle, Subcutaneous Fat, and Fascia Thickness. Methods Protoc. 2019;2(3). doi: 10.3390/mps2030058 31295936.
36. Mayans D, Cartwright MS, Walker FO. Neuromuscular ultrasonography: quantifying muscle and nerve measurements. Phys Med Rehabil Clin N Am. 2012;23(1):133–48, xii. doi: 10.1016/j.pmr.2011.11.009 22239880.
37. Harris-Love MO, Seamon BA, Teixeira C, Ismail C. Ultrasound estimates of muscle quality in older adults: reliability and comparison of Photoshop and ImageJ for the grayscale analysis of muscle echogenicity. PeerJ. 2016;4:e1721. doi: 10.7717/peerj.1721 26925339.
38. Sipila S, Suominen H. Muscle ultrasonography and computed tomography in elderly trained and untrained women. Muscle Nerve. 1993;16(3):294–300. doi: 10.1002/mus.880160309 8446128.
39. Reimers K, Reimers CD, Wagner S, Paetzke I, Pongratz DE. Skeletal muscle sonography: a correlative study of echogenicity and morphology. J Ultrasound Med. 1993;12(2):73–7. doi: 10.7863/jum.1993.12.2.73 8468739.
40. Guralnik JM, Simonsick EM, Ferrucci L, Glynn RJ, Berkman LF, Blazer DG, et al. A short physical performance battery assessing lower extremity function: association with self-reported disability and prediction of mortality and nursing home admission. J Gerontol. 1994;49(2):M85–94. doi: 10.1093/geronj/49.2.m85 8126356.
41. Guralnik JM, Ferrucci L, Pieper CF, Leveille SG, Markides KS, Ostir GV, et al. Lower extremity function and subsequent disability: consistency across studies, predictive models, and value of gait speed alone compared with the short physical performance battery. J Gerontol A Biol Sci Med Sci. 2000;55(4):M221–31. doi: 10.1093/gerona/55.4.m221 10811152.
42. Huy C, Schneider S. [Instrument for the assessment of middle-aged and older adults’ physical activity: design, eliability and application of the German-PAQ-50+]. Z Gerontol Geriatr. 2008;41(3):208–16. doi: 10.1007/s00391-007-0474-y 18327696.
43. Fried LP, Tangen CM, Walston J, Newman AB, Hirsch C, Gottdiener J, et al. Frailty in older adults: evidence for a phenotype. J Gerontol A Biol Sci Med Sci. 2001;56(3):M146–56. Epub 2001/03/17. doi: 10.1093/gerona/56.3.m146 11253156.
44. Chen WL, Peng TC, Sun YS, Yang HF, Liaw FY, Wu LW, et al. Examining the Association Between Quadriceps Strength and Cognitive Performance in the Elderly. Medicine (Baltimore). 2015;94(32):e1335. doi: 10.1097/MD.0000000000001335 26266380.
45. Tieland M, Trouwborst I, Clark BC. Skeletal muscle performance and ageing. J Cachexia Sarcopenia Muscle. 2018;9(1):3–19. doi: 10.1002/jcsm.12238 29151281.
46. Manini TM, Hong SL, Clark BC. Aging and muscle: a neuron’s perspective. Curr Opin Clin Nutr Metab Care. 2013;16(1):21–6. doi: 10.1097/MCO.0b013e32835b5880 23222705.
47. Gandevia SC. Spinal and supraspinal factors in human muscle fatigue. Physiol Rev. 2001;81(4):1725–89. doi: 10.1152/physrev.2001.81.4.1725 11581501.
48. Taylor JL. Point: the interpolated twitch does/does not provide a valid measure of the voluntary activation of muscle. Journal of applied physiology. 2009;107(1):354–5. doi: 10.1152/japplphysiol.91220.2008 18801954.
49. Clark BC, Taylor JL. Age-related changes in motor cortical properties and voluntary activation of skeletal muscle. Curr Aging Sci. 2011;4(3):192–9. 21529329.
50. Harridge SD, Kryger A, Stensgaard A. Knee extensor strength, activation, and size in very elderly people following strength training. Muscle Nerve. 1999;22(7):831–9. doi: 10.1002/(sici)1097-4598(199907)22:7<831::aid-mus4>3.0.co;2-3 10398199.
51. Stevens JE, Stackhouse SK, Binder-Macleod SA, Snyder-Mackler L. Are voluntary muscle activation deficits in older adults meaningful? Muscle Nerve. 2003;27(1):99–101. doi: 10.1002/mus.10279 12508301.
52. Clark DJ, Fielding RA. Neuromuscular contributions to age-related weakness. J Gerontol A Biol Sci Med Sci. 2012;67(1):41–7. doi: 10.1093/gerona/glr041 21415261.
53. Makizako H, Shimada H, Doi T, Tsutsumimoto K, Nakakubo S, Hotta R, et al. Predictive Cutoff Values of the Five-Times Sit-to-Stand Test and the Timed "Up & Go" Test for Disability Incidence in Older People Dwelling in the Community. Physical therapy. 2017;97(4):417–24. 28371914.
54. Bohannon RW. Five-repetition sit-to-stand test: usefulness for older patients in a home-care setting. Percept Mot Skills. 2011;112(3):803–6. doi: 10.2466/15.26.PMS.112.3.803-806 21853769.
55. Eriksrud O, Bohannon RW. Relationship of knee extension force to independence in sit-to-stand performance in patients receiving acute rehabilitation. Physical therapy. 2003;83(6):544–51. 12775200.
56. Alexander NB, Galecki AT, Nyquist LV, Hofmeyer MR, Grunawalt JC, Grenier ML, et al. Chair and bed rise performance in ADL-impaired congregate housing residents. J Am Geriatr Soc. 2000;48(5):526–33. doi: 10.1111/j.1532-5415.2000.tb04999.x 10811546.
57. Van der Heijden MM, Meijer K, Willems PJ, Savelberg HH. Muscles limiting the sit-to-stand movement: an experimental simulation of muscle weakness. Gait Posture. 2009;30(1):110–4. doi: 10.1016/j.gaitpost.2009.04.002 19419871.
58. Lord SR, Murray SM, Chapman K, Munro B, Tiedemann A. Sit-to-stand performance depends on sensation, speed, balance, and psychological status in addition to strength in older people. J Gerontol A Biol Sci Med Sci. 2002;57(8):M539–43. doi: 10.1093/gerona/57.8.m539 12145369.
59. Zech A, Steib S, Sportwiss D, Freiberger E, Pfeifer K. Functional muscle power testing in young, middle-aged, and community-dwelling nonfrail and prefrail older adults. Arch Phys Med Rehabil. 2011;92(6):967–71. doi: 10.1016/j.apmr.2010.12.031 21514567.
60. Mor V, Angelelli J, Jones R, Roy J, Moore T, Morris J. Inter-rater reliability of nursing home quality indicators in the U.S. BMC Health Serv Res. 2003;3(1):20. doi: 10.1186/1472-6963-3-20 14596684.
61. Colbert LH, Matthews CE, Havighurst TC, Kim K, Schoeller DA. Comparative validity of physical activity measures in older adults. Med Sci Sports Exerc. 2011;43(5):867–76. doi: 10.1249/MSS.0b013e3181fc7162 20881882.
Článek vyšel v časopise
PLOS One
2019 Číslo 9
- Tisícileté topoly, mokří psi, stárnoucí kočky a ospalé octomilky – „jednohubky“ z výzkumu 2024/41
- Jaké jsou aktuální trendy v léčbě karcinomu slinivky?
- Může hubnutí souviset s vyšším rizikem nádorových onemocnění?
- Menstruační krev má značný diagnostický potenciál, mimo jiné u diabetu
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
Nejčtenější v tomto čísle
- Graviola (Annona muricata) attenuates behavioural alterations and testicular oxidative stress induced by streptozotocin in diabetic rats
- CH(II), a cerebroprotein hydrolysate, exhibits potential neuro-protective effect on Alzheimer’s disease
- Comparison between Aptima Assays (Hologic) and the Allplex STI Essential Assay (Seegene) for the diagnosis of Sexually transmitted infections
- Assessment of glucose-6-phosphate dehydrogenase activity using CareStart G6PD rapid diagnostic test and associated genetic variants in Plasmodium vivax malaria endemic setting in Mauritania
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy