Interocular symmetry, intraobserver repeatability, and interobserver reliability of cone density measurements in the 13-lined ground squirrel
Autoři:
Benjamin S. Sajdak aff001; Alexander E. Salmon aff002; Rachel E. Linderman aff002; Jenna A. Cava aff001; Heather Heitkotter aff002; Joseph Carroll aff001
Působiště autorů:
Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, United States of America
aff001; Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States of America
aff002; Morgridge Institute of Research, Madison, WI, United States of America
aff003; Biophysics, Medical College of Wisconsin, Milwaukee, WI, United States of America
aff004
Vyšlo v časopise:
PLoS ONE 14(9)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0223110
Souhrn
Background
The 13-lined ground squirrel (13-LGS) possesses a cone-dominant retina that is highly amenable to non-invasive high-resolution retinal imaging. The ability for longitudinal assessment of a cone-dominant photoreceptor mosaic with an adaptive optics scanning light ophthalmoscope (AOSLO) has positioned the 13-LGS to become an accessible model for vision research. Here, we examine the interocular symmetry, repeatability, and reliability of cone density measurements in the 13-LGS.
Methods
Thirteen 13-LGS (18 eyes) were imaged along the vertical meridian with a custom AOSLO. Regions of interest were selected superior and inferior to the optic nerve head, including the cone-rich visual streak. Non-confocal split-detection was used to capture images of the cone mosaic. Five masked observers each manually identified photoreceptors for 26 images three times and corrected an algorithm’s cell identification outputs for all 214 images three times. Intraobserver repeatability and interobserver reliability of cone density were characterized using data collected from all five observers, while interocular symmetry was assessed in five animals using the average values of all observers. The distribution of image quality for all images in this study was assessed with open-sourced software.
Results
Manual identification was less repeatable than semi-automated correction for four of the five observers. Excellent repeatability was seen from all observers (ICC = 0.997–0.999), and there was good agreement between repeat cell identification corrections in all five observers (range: 9.43–25.71 cells/degree2). Reliability of cell identification was significantly different in two of the five observers, and worst in images taken from hibernating 13-LGS. Interocular symmetry of cone density was seen in the five 13-LGS assessed. Image quality was variable between blur- and pixel intensity-based metrics.
Conclusions
Interocular symmetry with repeatable cone density measurements suggest that the 13-LGS is well-suited for longitudinal examination of the cone mosaic using split-detection AOSLO. Differences in reliability highlight the importance of observer training and automation of AOSLO cell detection. Cone density measurements from hibernating 13-LGS are not repeatable. Additional studies are warranted to assess other metrics of cone health to detect deviations from normal 13-LGS in future models of cone disorder in this species.
Klíčová slova:
Algorithms – Animal models – Eyes – Imaging techniques – Photoreceptors – Research validity – Squirrels – Retina
Zdroje
1. Slijkerman RW, Song F, Astuti GD, Huynen MA, van Wijk E, Stieger K, et al. The pros and cons of vertebrate animal models for functional and therapeutic research on inherited retinal dystrophies. Progress in Retinal and Eye Research. 2015;48:137–59. doi: 10.1016/j.preteyeres.2015.04.004 25936606
2. Walters S, Schwarz C, Sharma R, Rossi EA, Fischer WS, DiLoreto DA, et al. Cellular-scale evaluation of induced photoreceptor degeneration in the living primate eye. Biomedical Optics Express. 2019;10(1):66–82. doi: 10.1364/BOE.10.000066 30775083
3. Merriman DK, Sajdak BS, Li W, Jones BW. Seasonal and post-trauma remodeling in cone-dominant ground squirrel retina. Experimental Eye Research. 2016;150:90–105. doi: 10.1016/j.exer.2016.01.011 26808487
4. Sajdak B, Sulai YN, Langlo CS, Luna G, Fisher SK, Merriman DK, et al. Noninvasive imaging of the thirteen-lined ground squirrel photoreceptor mosaic. Visual Neuroscience. 2016;33:e003. doi: 10.1017/S0952523815000346 26923645
5. Garrioch R, Langlo C, Dubis AM, Cooper RF, Dubra A, Carroll J. Repeatability of in vivo parafoveal cone density and spacing measurements. Optometry and Vision Science. 2012;89(5):632–43. doi: 10.1097/OPX.0b013e3182540562 22504330
6. Liu BS, Tarima S, Visotcky A, Pechauer A, Cooper RF, Landsem L, et al. The reliability of parafoveal cone density measurements. British Journal of Ophthalmology. 2014;98(8):1126–31. doi: 10.1136/bjophthalmol-2013-304823 24855115
7. Morgan JIW, Vergilio GK, Hsu J, Dubra A, Cooper RF. The reliability of cone density measurements in the presence of rods. Translational Vision Science & Technology. 2018;7(3):21.
8. Langlo CS, Erker LR, Parker M, Patterson EJ, Higgins BP, Summerfelt P, et al. Repeatability and longitudinal assessment of foveal cone structure in CNGB3-associated achromatopsia. Retina. 2017:1956–66. doi: 10.1097/IAE.0000000000001434 28145975
9. Abozaid MA, Langlo CS, Dubis AM, Michaelides M, Tarima S, Carroll J. Reliability and repeatability of cone density measurements in patients with congenital achromatopsia. Advances in Experimental Medicine and Biology. 2016;854:277–83. doi: 10.1007/978-3-319-17121-0_37 26427422
10. Tanna P, Kasilian M, Strauss R, Tee J, Kalitzeos A, Tarima S, et al. Reliability and repeatability of cone density measurements in patients with Stargardt disease and RPGR-associated retinopathy. Investigative Ophthalmology & Visual Science. 2017;58(9):3608–15.
11. Zayit-Soudry S, Sippl-Swezey N, Porco T, Lynch SK, Syed R, Ratnam K, et al. Repeatability of cone spacing measures in eye with inherited retinal degenerations. Investigative Ophthalmology & Visual Science. 2015;56(10):6179–89.
12. Huckenpahler A, Wilk M, Link B, Carroll J, Collery R. Repeatability and reproducibility of in vivo cone density measurements in the adult zebrafish retina. Advances in Experimental Medicine and Biology. 2018;1074:151–6. doi: 10.1007/978-3-319-75402-4_19 29721939
13. Grieve K, Roorda A. Intrinsic signals from human cone photoreceptors. Investigative Ophthalmology & Visual Science. 2008;49(2):713–9.
14. Jonnal R, Kocaoglu OP, Wang Q, Lee S, Miller DT. Phase-sensitive imaging of the outer retina using optical coherence tomography and adaptive optics. Biomedical Optics Express. 2012;3(1):104–24. doi: 10.1364/BOE.3.000104 22254172
15. Meadway A, Sincich LC. Light propagation and capture in cone photoreceptors. Biomedical Optics Express. 2018;9(11):5543–65. doi: 10.1364/BOE.9.005543 30460146
16. Scoles D, Sulai YN, Langlo CS, Fishman GA, Curcio CA, Carroll J, et al. In vivo imaging of human cone photoreceptor inner segments. Investigative Ophthalmology & Visual Science. 2014;55(7):4244–51.
17. Cunefare D, Cooper RF, Higgins B, Katz DF, Dubra A, Carroll J, et al. Automatic detection of cone photoreceptors in split detector adaptive optics scanning light ophthalmoscope images. Biomedical Optics Express. 2016;7(5):2036–50. doi: 10.1364/BOE.7.002036 27231641
18. Bergeles C, Dubis AM, Davidson B, Kasilian M, Kalitzeos A, Carroll J, et al. Unsupervised identification of cone photoreceptors in non-confocal adaptive optics scanning light ophthalmoscope images. Biomedical Optics Express. 2017;8(6):3081–94. doi: 10.1364/BOE.8.003081 28663928
19. Liu J, Jung H, Dubra A, Tam J. Automated photoreceptor cell identification on nonconfocal adaptive optics images using multiscale circular voting. Investigative Ophthalmology & Visual Science. 2017;58(11):4477–89.
20. Cunefare D, Langlo CS, Patterson EJ, Blau S, Dubra A, Carroll J, et al. Deep learning based detection of cone photoreceptors with multimodal adaptive optics scanning light ophthalmoscope images of achromatopsia. Biomedical Optics Express. 2018;9(8):3740–56. doi: 10.1364/BOE.9.003740 30338152
21. Davidson B, Kalitzeos A, Carroll J, Dubra A, Ourselin S, Michaelides M, et al. Automatic cone photoreceptor localisation in healthy and Stargardt afflicted retinas using deep learning. Scientific Reports. 2018;8(1):7911. doi: 10.1038/s41598-018-26350-3 29784939
22. Merriman DK, Lahvis G, Jooss M, Gesicki JA, Schill K. Current practices in a captive breeding colony of 13-lined ground squirrels (Ictidomys tridecemlineatus). Lab Animal. 2012;41(11):315–25. doi: 10.1038/laban.150 23079915
23. Sajdak BS, Salmon AE, Litts KM, Wells C, Allen KP, Dubra A, et al. Evaluating seasonal changes of cone photoreceptor structure in the 13-lined ground squirrel. Vision Research. 2019;158:90–9. doi: 10.1016/j.visres.2019.02.009 30826354
24. Sajdak BS, Bell BA, Lewis TR, Luna G, Cornwell GS, Fisher SK, et al. Assessment of outer retinal remodeling in the hibernating 13-lined ground squirrel. Investigative Ophthalmology & Visual Science. 2018;59(6):2538–47.
25. Salmon AE, Cooper RF, Langlo CS, Baghaie A, Dubra A, Carroll J. An automated reference frame selection (ARFS) algorithm for cone imaging with adaptive optics scanning light ophthalmoscopy. Translational Vision Science & Technology. 2017;6(2):9.
26. Dubra A, Harvey Z. Registration of 2D images from fast scanning ophthalmic instruments. In: Fischer B, Dawant B, Lorenz C, editors. Biomedical Image Registration. Lecture Notes in Computer Science. 1 ed. Berlin: Springer-Verlag; 2010. p. 60–71.
27. Chen M, Cooper RF, Han GK, Gee J, Brainard DH, Morgan JI. Multi-modal automatic montaging of adaptive optics retinal images. Biomedical Optics Express. 2016;7(12):4899–918. doi: 10.1364/BOE.7.004899 28018714
28. von Schantz M, Szél A, van Veen T, Farber DB. Expression of phototransduction cascade genes in the ground squirrel retina. Investigative Ophthalmology & Visual Science. 1994;35(5):2558–66.
29. Cooper RF, Wilk MA, Tarima S, Carroll J. Evaluating descriptive metrics of the human cone mosaic. Investigative Ophthalmology & Visual Science. 2016;57(7):2992–3001.
30. Lamprecht MR, Sabatini DM, Carpenter AE. CellProfiler: free, versatile software for automated biological image analysis. Biotechniques. 2007;42(1):71–5. doi: 10.2144/000112257 17269487
31. Bray MA, Fraser AN, Hasaka TP, Carpenter AE. Workflow and metrics for image quality control in large-scale high-content screens. Journal of Biomolecular Screening. 2012;17(2):266–74. doi: 10.1177/1087057111420292 21956170
32. Groen FC, Young IT, Ligthart G. A comparison of different focus functions for use in autofocus algorithms. Cytometry. 1985;6(2):81–91. doi: 10.1002/cyto.990060202 3979220
33. Yeo TTE, Ong SH, Jayasooriah T, Sinniah R. Autofocusing for tissue microscopy. Image and Vision Computing. 1993;11(10):629–39.
34. Bland JM, Altman DG. Statistics notes: Measurement error proportional to the mean. British Medical Journal. 1996;313(7049):106. doi: 10.1136/bmj.313.7049.106 8688716
35. Bland JM, Altman DG. Applying the right statistics: analyses of measurement studies. Ultrasound in Obstetrics & Gynecology. 2003;22:85–93.
36. Bland JM, Altman DG. Measuring agreement in method comparison studies. Statistical Methods in Medical Research. 1999;8(2):135–60. doi: 10.1177/096228029900800204 10501650
37. Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986;1(8476):307–10. 2868172
38. Dubra A, Sulai Y, Norris JL, Cooper RF, Dubis AM, Williams DR, et al. Noninvasive imaging of the human rod photoreceptor mosaic using a confocal adaptive optics scanning ophthalmoscope. Biomedical Optics Express. 2011;2(7):1864–76. doi: 10.1364/BOE.2.001864 21750765
39. Kryger Z, Galli-Resta L, Jacobs GH, Reese BE. The topography of rod and cone photoreceptors in the retina of the ground squirrel. Visual Neuroscience. 1998;15(4):685–91. doi: 10.1017/s0952523898154081 9682870
40. Long KO, Fisher SK. The distributions of photoreceptors and ganglion cells in the California ground squirrel, Spermophilus beecheyi. Journal of Comparative Neurology. 1983;221(3):329–40. doi: 10.1002/cne.902210308 6655087
41. Hughes A. The topography of vision in animals with contrasting life styles. In: Crescitelli F, editor. Handbook of Sensory Physiology. VII/5. Berlin: Springer; 1977. p. 614–42.
42. Izatt JA, Choma MA. Theory of optical coherence tomography. In: Drexler W, Fujimoto JG, editors. Optical Coherence Tomography: Technology and Applications. 1 ed. Berlin, Heidelberg: Springer Berlin Heidelberg; 2008. p. 47–72.
43. Linderman R, Salmon AE, Strampe M, Russillo M, Khan J, Carroll J. Assessing the accuracy of foveal avascular zone measurements using optical coherence tomography angiography: segmentation and scaling. Translational Vision Science & Technology. 2017;6(3):16.
44. Hirsch J, Curcio CA. The spatial resolution capacity of human foveal retina. Vision Research. 1989;29(9):1095–102. doi: 10.1016/0042-6989(89)90058-8 2617858
45. Sajdak BS, Salmon AE, Litts KM, Wells C, Allen KP, Dubra A, et al. Evaluating seasonal changes of cone photoreceptor structure in the 13-lined ground squirrel. Vision Research. 2019;158:90–9. doi: 10.1016/j.visres.2019.02.009 30826354
Článek vyšel v časopise
PLOS One
2019 Číslo 9
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Je libo čepici místo mozkového implantátu?
- Pomůže v budoucnu s triáží na pohotovostech umělá inteligence?
- AI může chirurgům poskytnout cenná data i zpětnou vazbu v reálném čase
- Nová metoda odlišení nádorové tkáně může zpřesnit resekci glioblastomů
Nejčtenější v tomto čísle
- Graviola (Annona muricata) attenuates behavioural alterations and testicular oxidative stress induced by streptozotocin in diabetic rats
- CH(II), a cerebroprotein hydrolysate, exhibits potential neuro-protective effect on Alzheimer’s disease
- Comparison between Aptima Assays (Hologic) and the Allplex STI Essential Assay (Seegene) for the diagnosis of Sexually transmitted infections
- Assessment of glucose-6-phosphate dehydrogenase activity using CareStart G6PD rapid diagnostic test and associated genetic variants in Plasmodium vivax malaria endemic setting in Mauritania
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy