Enhanced mechanical and thermal properties of electrically conductive TPNR/GNP nanocomposites assisted with ultrasonication
Autoři:
Ruey Shan Chen aff001; Mohd Farid Hakim Mohd Ruf aff001; Dalila Shahdan aff001; Sahrim Ahmad aff001
Působiště autorů:
Materials Science Program, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor D.E., Malaysia
aff001
Vyšlo v časopise:
PLoS ONE 14(9)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0222662
Souhrn
Thermoplastic natural rubber (TPNR) was compounded with graphene nanoplatelets (GNP) via ultrasonication and melt blending. The effects of ultrasonication period (1-4 hours) and GNP weight fraction (0.5, 1.0, 1.5 and 2.0 wt.%) on the mechanical, thermal and conductivity properties were investigated. Results showed that the 3 hours of ultrasonic treatment on LNR/GNP gave the greatest improvement in tensile strength of 25.8% (TPNR/GNP nanocomposites) as compared to those without ultrasonication. The TPNR nanocomposites containing 1.5 wt.% GNP exhibited the highest strength (16 MPa for tensile, 14 MPa for flexural and 11 kJm-2 for impact) and modulus (556 MPa and 869 MPa for tensile and flexural, respectively). The incorporation of GNP had enhanced the thermal stability. It can be concluded that the GNP had imparted the thermally and electrically conductive nature to the TPNR blend.
Klíčová slova:
Electric conductivity – Sonication – Ultrasonication – Vibration – Nanocomposites – Thermal conductivity – Graphene – Nanomaterials
Zdroje
1. Park SM, Kim DS. Preparation and physical properties of polypropylene nanocomposites with dodecylated graphene nanoplatelets. Compos Interfaces. 2017;24(4):335–45. doi: 10.1080/09276440.2016.1204137
2. Al-Saleh MH. Electrical and mechanical properties of graphene/carbon nanotube hybrid nanocomposites. Synth Met. 2015;209:41–6. doi: 10.1016/j.synthmet.2015.06.023
3. Chen RS, Mohd Amran NA, Ahmad S. Reinforcement effect of nanocomposites with single/hybrid graphene nanoplatelets and magnesium hydroxide. J Therm Anal Calorim. 2019;137(1):79–92. doi: 10.1007/s10973-018-7935-y
4. Zakaria NE, Ahmad I, Wan Busu WN, Khalid KH, Baharum A. Kesan Penambahan Kepingan Nanozarah Grafin terhadap Sifat Mekanik dan Terma Hibrid Komposit Serabut Sansevieria-Getah Asli-Polietilena Berketumpatan Tinggi. Sains Malaysiana. 2019;48(5):1121–8. doi: 10.17576/jsm-2019-4805-21
5. He S, Zhang J, Xiao X, Hong X. Effects of ultrasound vibration on the structure and properties of polypropylene/graphene nanoplatelets composites. Polymer Engineering & Science. 2018;58(3):377–86. doi: 10.1002/pen.24584
6. Mohd Amran NA, Ahmad S, Chen RS, Shahdan D, editors. Tensile properties and thermal stability of nanocomposite poly-lactic acid/liquid natural rubber filled graphene nanoplates. AIP Conference Proceedings; 2019: AIP Publishing.
7. Shahdan D, Ahmad SH, Flaifel MH, editors. Effect of ultrasonic treatment on tensile properties of PLA/LNR/NiZn ferrite nanocomposite. AIP Conference Proceedings; 2013: AIP.
8. Seretis GV, Theodorakopoulos ID, Manolakos DE, Provatidis CG. Effect of sonication on the mechanical response of graphene nanoplatelets/glass fabric/epoxy laminated nanocomposites. Compos Part B Eng. 2018;147:33–41. doi: 10.1016/j.compositesb.2018.04.034
9. Covarrubias-Gordillo CA, Soriano-Corral F, Ávila-Orta CA, Cruz-Delgado VJ, Neira-Velzquez MG, Hernández-Hernández E, et al. Surface Modification of Carbon Nanofibers and Graphene Platelets Mixtures by Plasma Polymerization of Propylene. J Nanomater. 2017;2017:10. doi: 10.1155/2017/4875319
10. Zailan FD, Chen RS, Ahmad S, Shahdan D, Mat Ali A, Mohd Ruf MFH. Blends of linear low-density polyethylene, natural rubber and polyaniline: Tensile properties and thermal stability. Malaysian Journal of Analytical Sciences. 2018;22(6):999–1006. doi: 10.17576/mjas-2018-2206-09
11. Saleh AB, Ishak ZM, Hashim A, Kamil W, Ishiaku U. Synthesis and characterization of liquid natural rubber as impact modifier for epoxy resin. Physics Procedia. 2014;55:129–37. doi: 10.1016/j.phpro.2014.07.019
12. Phua J-L, Teh P-L, Ghani SA, Yeoh C-K. Effect of heat assisted bath sonication on the mechanical and thermal deformation behaviours of graphene nanoplatelets filled epoxy polymer composites. Int J Polym Sci. 2016;2016. doi: 10.1155/2016/9767183
13. He F, Yuan T, Li C, Sun L, Liao S. Interfacial interactions and properties of natural rubber–silica composites with liquid natural rubber as a compatibilizer and prepared by a wet‐compounding method. J Appl Polym Sci. 2018;135(30):46457. doi: 10.1002/app.46457
14. Huang YY, Terentjev EM. Dispersion of carbon nanotubes: mixing, sonication, stabilization, and composite properties. Polymers. 2012;4(1):275–95. doi: 10.3390/polym4010275
15. Liang J-Z, Du Q, Tsui GC-P, Tang C-Y. Tensile properties of graphene nano-platelets reinforced polypropylene composites. Compos Part B Eng. 2016;95:166–71. doi: 10.1016/j.compositesb.2016.04.011
16. Ren Y, Zhang Y, Fang H, Ding T, Li J, Bai S-L. Simultaneous enhancement on thermal and mechanical properties of polypropylene composites filled with graphite platelets and graphene sheets. Compos Part A Appl S. 2018;112:57–63. doi: 10.1016/j.compositesa.2018.05.017
17. Kalantari B, Mohaddes Mojtahedi MR, Sharif F, Semnani Rahbar R. Flow-induced crystallization of polypropylene in the presence of graphene nanoplatelets and relevant mechanical properties in nanocompsoite fibres. Compos Part A Appl S. 2015;76:203–14. doi: 10.1016/j.compositesa.2015.05.028
18. Liu Y, Wu H, Chen G. Enhanced mechanical properties of nanocomposites at low graphene content based on in situ ball milling. Polym Compos. 2016;37(4):1190–7. doi: 10.1002/pc.23283
19. Yetkİn SH, Karadenİz B, Güleşen M. Investigation of The Mechanical and Thermal Properties of Graphene Oxide Filled Polypropylene Composites. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi. 2017;4(2):34–40.
20. Inuwa I, Hassan A, Shamsudin S. Thermal properties, structure and morphology of graphene reinforced polyethylene terephthalate/polypropylene nanocomposites. Malays J Anal Sci. 2014;18:466–77.
21. Praveena KR, Avadhani N, Vijayakumar P, Ekwipoo K, Jobish J. Thermogravimetric and Swelling Studies on the Natural Rubber Based Super Elastomer. International Journal of Innovative Research in Engineering & Management. 2017;4(4):723–8. doi: 10.21276/ijirem.2017.4.4.10
22. Abdul Wahab MK, Ismail H, Othman N. Compatibilization Effects of PE-g-MA on Mechanical, Thermal and Swelling Properties of High Density Polyethylene/Natural Rubber/Thermoplastic Tapioca Starch Blends. Polymer-Plastics Technology and Engineering. 2012;51(3):298–303. doi: 10.1080/03602559.2011.639331
23. Liang J, Wang J, Tsui GC, Tang C. Thermal decomposition kinetics of polypropylene composites filled with graphene nanoplatelets. Polym Test. 2015;48:97–103. doi: 10.1016/j.polymertesting.2015.09.015
24. Jeske H, Schirp A, Cornelius F. Development of a thermogravimetric analysis (TGA) method for quantitative analysis of wood flour and polypropylene in wood plastic composites (WPC). Thermochim Acta. 2012;543:165–71. doi: 10.1016/j.tca.2012.05.016
25. Chen RS, Ahmad S, Gan S, Salleh MN, Ab Ghani MH, Tarawneh MaA. Effect of polymer blend matrix compatibility and fibre reinforcement content on thermal stability and flammability of ecocomposites made from waste materials. Thermochim Acta. 2016;640:52–61. doi: 10.1016/j.tca.2016.08.005
26. Ismail H, Khoon TB, Hayeemasae N, Husseinsyah S. Effect of oil palm ash on the properties of polypropylene/recycled natural rubber gloves/oil palm ash composites. BioResources. 2015;10(1):1495–505.
27. Liang J, Wang J, Tsui GC, Tang C. Thermal properties and thermal stability of polypropylene composites filled with graphene nanoplatelets. J Thermoplast Compos Mater. 2018;31(2):246–64.
28. Yadav M, Rhee KY, Jung IH, Park SJ. Eco-friendly synthesis, characterization and properties of a sodium carboxymethyl cellulose/graphene oxide nanocomposite film. Cellulose. 2013;20:687–98.
29. Xing J, Deng B, Liu Q. Effect of graphene nanoplatelets on the performance of polyphenylene sulfide composites produced by melt intercalation. High Perform Polym. 2018;30(5):519–26.
30. Wang F, Drzal LT, Qin Y, Huang Z. Mechanical properties and thermal conductivity of graphene nanoplatelet/epoxy composites. J Mater Sci. 2015;50(3):1082–93.
31. Jarosinski L, Rybak A, Gaska K, Kmita G, Porebska R, Kapusta C. Enhanced thermal conductivity of graphene nanoplatelets epoxy composites. Materials Science-Poland. 2017;35(2):382–9.
32. Li A, Zhang C, Zhang Y-F. Thermal conductivity of graphene-polymer composites: Mechanisms, properties, and applications. Polymers. 2017;9(9):437.
33. Shtein M, Nadiv R, Buzaglo M, Kahil K, Regev O. Thermally conductive graphene-polymer composites: size, percolation, and synergy effects. Chem Mater. 2015;27(6):2100–6.
34. Nan C-W, Liu G, Lin Y, Li M. Interface effect on thermal conductivity of carbon nanotube composites. Appl Phys Lett. 2004;85(16):3549–51.
35. Pham AT, Barisik M, Kim B. Interfacial thermal resistance between the graphene-coated copper and liquid water. Int J Heat Mass Transfer. 2016;97:422–31.
36. Xiao W, Zhai X, Ma P, Fan T, Li X. Numerical study on the thermal behavior of graphene nanoplatelets/epoxy composites. Results in Physics. 2018;9:673–9.
37. Puryanti D, Ahmad SH, Abdullah MH. Effect of Nickel-Cobalt-Zinc Ferrite Filler on Electrical and Mechanical Properties of Thermoplastic Natural Rubber Composites. Polymer-Plastics Technology and Engineering. 2006;45(4):561–7. doi: 10.1080/03602550600554166
38. Huang C-L, Lou C-W, Liu C-F, Huang C-H, Song X-M, Lin J-H. Polypropylene/graphene and polypropylene/carbon fiber conductive composites: Mechanical, crystallization and electromagnetic properties. Applied Sciences. 2015;5(4):1196–210.
39. Milani MA, González D, Quijada R, Basso NR, Cerrada ML, Azambuja DS, et al. Polypropylene/graphene nanosheet nanocomposites by in situ polymerization: synthesis, characterization and fundamental properties. Compos Sci Technol. 2013;84:1–7.
Článek vyšel v časopise
PLOS One
2019 Číslo 9
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Je libo čepici místo mozkového implantátu?
- Pomůže v budoucnu s triáží na pohotovostech umělá inteligence?
- AI může chirurgům poskytnout cenná data i zpětnou vazbu v reálném čase
- Nová metoda odlišení nádorové tkáně může zpřesnit resekci glioblastomů
Nejčtenější v tomto čísle
- Graviola (Annona muricata) attenuates behavioural alterations and testicular oxidative stress induced by streptozotocin in diabetic rats
- CH(II), a cerebroprotein hydrolysate, exhibits potential neuro-protective effect on Alzheimer’s disease
- Comparison between Aptima Assays (Hologic) and the Allplex STI Essential Assay (Seegene) for the diagnosis of Sexually transmitted infections
- Assessment of glucose-6-phosphate dehydrogenase activity using CareStart G6PD rapid diagnostic test and associated genetic variants in Plasmodium vivax malaria endemic setting in Mauritania
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy