Chemical volatiles present in cotton gin trash: A by-product of cotton processing
Autoři:
Mary A. Egbuta aff001; Shane McIntosh aff001; Daniel L. E. Waters aff001; Tony Vancov aff001; Lei Liu aff001
Působiště autorů:
Southern Cross Plant Science, Southern Cross University, Lismore, New South Wales, Australia
aff001; New South Wales Department of Primary Industries, Wollongbar, New South Wales, Australia
aff002; ARC ITTC for Functional Grains, Charles Sturt University, Wagga, Wagga, New South Wales, Australia
aff003
Vyšlo v časopise:
PLoS ONE 14(9)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0222146
Souhrn
Cotton gin trash (CGT), a waste product of cotton gins, make up about 10% of each bale of cotton bolls ginned. The current study investigates high value volatile compounds in CGT to add value to this by-product. The volatile compounds in CGT and different parts of the cotton plant were extracted using various methods, identified by gas chromatography-mass spectrometry (GC-MS) or nuclear magnetic resonance (NMR) spectroscopy, and then quantified by gas chromatography-flame ionisation detection (GC-FID) against available standards. Terpenoids including monoterpenoids and sesquiterpenoids were found to be the most abundant, making up 64.66% (area under peak) of total volatiles extracted by hydro-distillation. The major extractable terpenoids in CGT were α-pinene (13.69–23.05 μg/g), β-caryophyllene (3.99–74.32 μg/g), α-humulene (2.00–25.71 μg/g), caryophyllene oxide (41.50–102.08 μg/g) and β-bisabolol (40.05–137.32 μg/g). Recoveries varied between different extraction methods. The terpenoids were found to be more abundant in the calyx (659.12 μg/g) and leaves (627.72 μg/g) than in stalks (112.97 μg/g) and stems (24.24 μg/g) of the cotton plant, indicating the possible biological origin of CGT volatiles. This study is the first to identify and quantify the different terpenoids present in CGT and significantly, β-bisabolol, an abundant compound (sesquiterpene alcohol) which may have valuable biological prospects. These findings therefore contribute to identifying alternative management strategies and uses of CGT.
Klíčová slova:
Physical sciences – Chemistry – Chemical compounds – Organic compounds – Terpenes – Hydrocarbons – Hexanes – Solvents – Organic solvents – Organic chemistry – Materials science – Materials – Mixtures – Solutions – Biology and life sciences – Organisms – Eukaryota – Plants – Flowering plants – Cotton – Biochemistry – Lipids – Oils – Agriculture – Crop science – Crops – Fiber crops – Plant science – Plant anatomy – Leaves – Research and analysis methods – Spectrum analysis techniques – NMR spectroscopy
Zdroje
1. Egbuta MA, McIntosh S, Waters DL, Vancov T, Liu L. Biological importance of cotton by-products relative to chemical constituents of the cotton plant, Molecules 2017; 22(1): 93; doi: 10.3390/molecules22010093 28067842
2. Chaudhary MR. Harvesting and ginning of cotton in the world [Internet]. 2011. http://www.icac.org/cotton_info/speeches/Chaudhry/BW97.pdf
3. Knox O, Rochester I, Vadakattu G, Lawrence L. Composting in Australian cotton production. The Australian Cotton Grower. Australia: Australian Cotton Research Institute; 2006: 46–48. http://www.greenmountpress.com.au/cottongrower/Backissues/274ascot06/46_Composting.pdf
4. Rogers GM, Poore MH, Paschal JC. Feeding cotton products to cattle. Verterinary Clin North Am Food Anim Pract. 2002;18: 267–294.
5. Haleem N, Arshad M, Shahid M, Tahir MA. Synthesis of carboxymethyl cellulose from waste of cotton ginning industry. Carbohydr Polym. 2014;113: 249–255. http://dx.doi.org/10.1016/j.carbpol.2014.07.023 25256482
6. Agblevor FA, Batz S, Trumbo J. Composition and ethanol production potential of cotton gin residues. Appl Biochem Biotechnol. 2003;105: 219–230. Available: http://www.ncbi.nlm.nih.gov/pubmed/12721487 12721487
7. Jeoh T, Agblevor FA. Characterization and fermentation of steam exploded cotton gin waste. Biomass and Bioenergy. 2001;21: 109–120. http://dx.doi.org/10.1016/S0961-9534(01)00028-9
8. McIntosh S, Vancov T, Palmer J, Morris S. Ethanol production from cotton gin trash using optimised dilute acid pretreatment and whole slurry fermentation processes. Bioresour Technol. 2014;173: 42–51. doi: 10.1016/j.biortech.2014.09.063 25280112
9. Shen J, Agblevor FA. Ethanol production of semi-simultaneous saccharification and fermentation from mixture of cotton gin waste and recycled paper sludge. Bioprocess Biosyst Eng. 2011;34: 33–43. doi: 10.1007/s00449-010-0444-4 20559849
10. Bennett RN, Wallsgrove RM. Secondary metabolites in plant defence mechanisms. New Phytol. Blackwell Publishing Ltd; 1994;127: 617–633. doi: 10.1111/j.1469-8137.1994.tb02968.x
11. Degenhardt J, Köllner TG, Gershenzon J. Monoterpene and sesquiterpene synthases and the origin of terpene skeletal diversity in plants. Phytochemistry. 2009;70: 1621–1637. http://dx.doi.org/10.1016/j.phytochem.2009.07.030 19793600
12. Pare PW, Tumlinson JH. De Novo Biosynthesis of Volatiles Induced by Insect Herbivory in Cotton Plants. Plant Physiol. 1997;114: 1161–1167. doi: 10.1104/pp.114.4.1161 12223763
13. Rose USR, Tumlinson JH. Systemic induction of volatile release in cotton: How specific is the signal to herbivory? Planta. 2005;222: 327–335. Available: http://download-v2.springer.com/static/pdf/598/art%253A10.1007%252Fs00425-005-1528-2.pdf?token2=exp=1432870421~acl=%2Fstatic%2Fpdf%2F598%2Fart%25253A10.1007%25252Fs00425-005-1528-2.pdf*~hmac=7d42c9599e2a03ce0bb278f81d3b738438720cc8469c4c0d21fcb1e040bc29ba doi: 10.1007/s00425-005-1528-2 15856281
14. Hedin PA, Thompson AC, Gueldner RC. Constituents of cotton bud essential oil. Phytochemistry. 1975;14: 2087–2088. http://dx.doi.org/10.1016/0031-9422(75)83137-2
15. Hedin PA, Thompson AC, Gueldner RC, Rizk AM, Salama HS. Egyptian cotton leaf essential oil. Phytochemistry. 1972;11: 2356–2357. http://dx.doi.org/10.1016/S0031-9422(00)88415-0
16. Thompson AC, Baker DN, Gueldner RC, Hedin PA. Identification and Quantitative Analysis of the Volatile Substances Emitted by Maturing Cotton in the Field. Plant Physiol. 1971;48: 50–52. Available: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC396798/ doi: 10.1104/pp.48.1.50 16657733
17. Elzen GW, Williams HJ, Bell AA, Stipanovic RD, Vinson SB. Quantification of volatile terpenes of glanded and glandless Gossypium hirsutum L. cultivars and lines by gas chromatography. J Agric Food Chem. American Chemical Society; 1985;33: 1079–1082. doi: 10.1021/jf00066a015
18. Huang X, Xiao Y, Köllner TG, Zhang W, Wu J, Wu J, et al. Identification and characterization of (E)-β-caryophyllene synthase and α/β-pinene synthase potentially involved in constitutive and herbivore-induced terpene formation in cotton. Plant Physiol Biochem. 2013;73: 302–308. http://dx.doi.org/10.1016/j.plaphy.2013.10.017 24184450
19. Opitz S, Kunert G, Gershenzon J. Increased terpenoid accumulation in cotton (Gossypiumhirsutum) foliage is a general wound response. J Chem Ecol. New York: Springer-Verlag; 2008;34: 508–522. doi: 10.1007/s10886-008-9453-z 18386096
20. Perveen SS, Qaisrani TM, Siddiqui F, Perveen R, Naqvi SHM. Cotton plant volatiles and insect’s behavior. Pakistan J Biol Sci. 2001;4: 554–558.
21. Chen QF, Liu ZP, Wang FP. Natural sesquiterpenoids as cytotoxic anticancer agents. Mini-Reviews Med Chem. 2011;11: 1153–1164.
22. Nerio LS, Olivero-Verbel J, Stashenko E. Repellent activity of essential oils: A review. Bioresour Technol. 2010;101: 372–378. http://dx.doi.org/10.1016/j.biortech.2009.07.048 19729299
23. Voon HC, Bhat R, Rusul G. Flower Extracts and Their Essential Oils as Potential Antimicrobial Agents for Food Uses and Pharmaceutical Applications. Compr Rev Food Sci Food Saf. Blackwell Publishing Inc; 2012;11: 34–55. doi: 10.1111/j.1541-4337.2011.00169.x
24. Azmir J, Zaidul ISM, Rahman MM, Sharif KM, Mohamed A, Sahena F, et al. Techniques for extraction of bioactive compounds from plant materials: A review. J Food Eng. 2013;117: 426–436. http://dx.doi.org/10.1016/j.jfoodeng.2013.01.014
25. Hernández Y, Lobo MG, González M. Factors affecting sample extraction in the liquid chromatographic determination of organic acids in papaya and pineapple. Food Chem. 2009;114: 734–741. http://dx.doi.org/10.1016/j.foodchem.2008.10.021
26. Berka-Zougali B, Ferhat M-A, Hassani A, Chemat F, Allaf KS. Comparative Study of Essential Oils Extracted from Algerian Myrtus communis L. Leaves Using Microwaves and Hydrodistillation. Int J Mol Sci. Molecular Diversity Preservation International (MDPI); 2012;13: 4673–4695. doi: 10.3390/ijms13044673 22606003
27. Joana Gil-Chávez G, Villa JA, Fernando Ayala-Zavala J, Basilio Heredia J, Sepulveda D, Yahia EM, et al. Technologies for Extraction and Production of Bioactive Compounds to be Used as Nutraceuticals and Food Ingredients: An Overview. Compr Rev Food Sci Food Saf. 2013;12: 5–23. doi: 10.1111/1541-4337.12005
28. Okoh OO, Sadimenko AP, Afolayan AJ. Comparative evaluation of the antibacterial activities of the essential oils of Rosmarinus officinalis L. obtained by hydrodistillation and solvent free microwave extraction methods. Food Chem. 2010;120: 308–312. http://dx.doi.org/10.1016/j.foodchem.2009.09.084
29. Omar J, Olivares M, Alonso I, Vallejo A, Aizpurua-Olaizola O, Etxebarria N. Quantitative Analysis of Bioactive Compounds from Aromatic Plants by Means of Dynamic Headspace Extraction and Multiple Headspace Extraction-Gas Chromatography-Mass Spectrometry. J Food Sci. 2016;81: C867–C873. doi: 10.1111/1750-3841.13257 26925555
30. Azwanida NN. A Review on the Extraction Methods Use in Medicinal Plants, Principle, Strength and Limitation. Med Aromat Plants. 2015;4: 1–6. doi: 10.4172/2167-0412.1000196
31. Zhang X, Gao H, Zhang L, Liu D, Ye X. Extraction of essential oil from discarded tobacco leaves by solvent extraction and steam distillation, and identification of its chemical composition. Ind Crops Prod. 2012;39: 162–169. https://doi.org/10.1016/j.indcrop.2012.02.029
32. Mu’azu K, Okonkwo EM, Abdullahi M. Economic Analysis of Production of Essential Oil using Steam Distillation Technology. Niger J Basic Appl Sci. 2009;17: 218–222.
33. Rassem HHA, Nour AH, Yunus RM. Techniques For Extraction of Essential Oils From Plants: A Review. Aust J Basic Appl Sci. 2016;10: 117–127.
34. Siddique AB, Mizanur Rahman SM, Hossain MA. Chemical composition of essential oil by different extraction methods and fatty acid analysis of the leaves of Stevia Rebaudiana Bertoni. Arab J Chem. 2016;9: S1185–S1189. https://doi.org/10.1016/j.arabjc.2012.01.004
35. Fitriady MA, Sulaswatty A, Agustian E, Salahuddin, Aditama DPF. Steam distillation extraction of ginger essential oil: Study of the effect of steam flow rate and time process. AIP Conf Proc. 2017;1803: 20032. doi: 10.1063/1.4973159
36. Haypek E, Silva LHM, Batista E, Marques DS, Meireles MAA, Meirelles AJA. Recovery of aroma compounds from orange essential oil. Brazilian J Chem Eng. 2000;17: 705–712. Available: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322000000400034&nrm=iso
37. Loughrin JH, Manukian A, Heath RR, Turlings TC, Tumlinson JH. Diurnal cycle of emission of induced volatile terpenoids by herbivore-injured cotton plant. Proc Natl Acad Sci. 1994;91: 11836–11840. Available: http://www.pnas.org/content/91/25/11836.abstract doi: 10.1073/pnas.91.25.11836 11607499
38. Thompson AC, Hanny BW, Hedin PA, Gueldner RC. Phytochemical Studies in the Family Malvaceae. I. Comparison of Essential Oils of Six Species by Gas-liquid Chromatography. Am J Bot. Botanical Society of America; 1971;58: 803–807. doi: 10.2307/2441557
39. Yang C-Q, Wu X-M, Ruan J-X, Hu W-L, Mao Y-B, Chen X-Y, et al. Isolation and characterization of terpene synthases in cotton (Gossypiumhirsutum). Phytochemistry. 2013;96: 46–56. http://dx.doi.org/10.1016/j.phytochem.2013.09.009 24074555
40. Elzen GW, Williams HJ, Vinson SB. Isolation and identification of cotton synomones mediating searching behavior by parasitoid Campoletissonorensis. J Chem Ecol. 1984;10: 1251–1264. doi: 10.1007/BF00988552 24318909
41. Huynh Q, Phan TD, Thieu VQQ, Tran ST, Do SH. Extraction and refining of essential oil from Australian tea tree, Melaleuca alterfornia, and the antimicrobial activity in cosmetic products. J Phys Conf Ser. 2012;352: 12053. Available: http://stacks.iop.org/1742-6596/352/i=1/a=012053
42. Johns MR, Johns JE, Rudolph V. Steam distillation of tea tree (Melaleuca alternifolia) oil. J Sci Food Agric. 1992;58: 49–53. doi: 10.1002/jsfa.2740580109
43. Bell AA. Physiology of secondary products. In: Mauney JR, Stewart JM, editors. Cotton physiology. Memphis, TN: The Cotton Foundation; 1986. pp. 597–621.
44. Bourland FM, Gbur EE. Relationships of plant trichomes to yield and fiber quality parameters in upland cotton. J Cotton Sci. 2017;21: 296–305.
45. Boykin JC, Bourland F, Dobbs DM. Relationship of leaf and bract trichomes to trash content of ginned lint. Beltwide Cotton Production Research Conference. San Antonio, TX: National Cotton Council Am., Memphis, TN.; 2013. pp. 774–782.
46. Cai C, Zhang X, Niu E, Zhao L, Li N, Wang L, et al. GhPSY, a phytoene synthase gene, is related to the red plant phenotype in upland cotton (Gossypium hirsutum L.). Mol Biol Rep. 2014;41: 4941–4952. doi: 10.1007/s11033-014-3360-x 24718783
47. Ding M, Chen J, Jiang Y, Lin L, Cao Y, Wang M, et al. Genome-wide investigation and transcriptome analysis of the WRKY gene family in Gossypium. Mol Genet Genomics. Springer Berlin Heidelberg; 2015;290: 151–171. doi: 10.1007/s00438-014-0904-7 25190108
48. Kasperbauer MJ, Loughrin JH. Morphogenic Light Reflected to Developing Cotton Leaves Affects Insect-Attracting Terpene Concentrations. Crop Sci. Madison, WI: Crop Science Society of America; 2004;44: 198–203. doi: 10.2135/cropsci2004.1980
49. Fahn A. Functions and location of secretory tissues in plants and their possible evolutionary trends. Isr J Plant Sci. Taylor & Francis Ltd; 2002;50: s59–S64. Available: http://ezproxy.scu.edu.au/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=aph&AN=14592168&site=ehost-live
50. Huchelmann A, Boutry M, Hachez C. Plant Glandular Trichomes: Natural Cell Factories of High Biotechnological Interest. Plant Physiol. American Society of Plant Biologists; 2017;175: 6–22. doi: 10.1104/pp.17.00727 28724619
51. King DJ, Gleadow RM, Woodrow IE. Regulation of oil accumulation in single glands of Eucalyptus polybractea. New Phytol. 2006;172: 440–451. doi: 10.1111/j.1469-8137.2006.01842.x 17083675
52. Wang G, Tian L, Aziz N, Broun P, Dai X, He J, et al. Terpene Biosynthesis in Glandular Trichomes of Hop. Plant Physiol. American Society of Plant Biologists; 2008;148: 1254–1266. doi: 10.1104/pp.108.125187 18775972
53. Chen Y, Wen Y, Chen Y, Cothren JT, Zhang X, Wang Y, et al. Effects of Extreme Air Temperature and Humidity on the Insecticidal Expression Level of Bt Cotton. J Integr Agric. 2012;11: 1836–1844. http://dx.doi.org/10.1016/S2095-3119(12)60188-9
54. Chen Y, Wu Y-G, Xu Y, Zhang J-F, Song X-Q, Zhu G-P, et al. Dynamic accumulation of sesquiterpenes in essential oil of Pogostemon cablin. Rev Bras Farmacogn. 2014;24: 626–634. https://doi.org/10.1016/j.bjp.2014.11.001
55. Fisheries QD of A and. Insect pest management in cotton [Internet]. 2010. https://www.daf.qld.gov.au/business-priorities/plants/field-crops-and-pastures/broadacre-field-crops/integrated-pest-management/ipm-information-by-crop/cotton
56. Eisenring M, Meissle M, Hagenbucher S, Naranjo SE, Wettstein F, Romeis J. Cotton Defense Induction Patterns Under Spatially, Temporally and Quantitatively Varying Herbivory Levels. Front Plant Sci. 2017;8. doi: 10.3389/fpls.2017.00234 28270830
57. Hajaji S, Sifaoui I, López-Arencibia A, Reyes-Batlle M, Valladares B, Pinero José E, et al. Amoebicidal activity of α-bisabolol, the main sesquiterpene in chamomile (Matricaria recutita L.) essential oil against the trophozoite stage of Acanthamoeba castellani Neff [Internet]. Acta Parasitologica. 2017. p. 290. doi: 10.1515/ap-2017-0036 28426414
58. Srivastava JK, Shankar E, Gupta S. Chamomile: A herbal medicine of the past with bright future. Mol Med Rep. 2010;3: 895–901. doi: 10.3892/mmr.2010.377 21132119
59. Lima FWJ, Dantas-Barros AM, Soares BM, de Santos DA, de Resende MA, de Carvalho MAR, et al. The composition and anti-microbial activity of the essential oil from Eremanthus erythropappus (DC) Macleish (Candeia). Int J Med Aromat Plants. New Delhi: Open Access Science Research Publisher; 2013;3: 1–10.
60. Minyard JP, Thompson AC, Hedin PA. Constituents of the cotton bud. VIII. .beta.-Bisabolol, a new sesquiterpene alcohol. J Org Chem. American Chemical Society; 1968;33: 909–911. doi: 10.1021/jo01266a116
61. Braun NA, Meier M, Pickenhagen W. Isolation and Chiral GC Analysis of β-Bisabolols—Trace Constituents from the Essential Oil of Santalum album L. (Santalaceae). J Essent Oil Res. Taylor & Francis; 2003;15: 63–65. doi: 10.1080/10412905.2003.9712064
62. Weyerstahl P, Marschall‐Weyerstahl H, Christiansen C. Constituents of ayou essential oil (Aydendron barbeyana Mez). Flavour Fragr J. 1989;4: 93–98. doi: 10.1002/ffj.2730040302
63. Cavalieri E, Mariotto S, Fabrizi C, de Prati AC, Gottardo R, Leone S, et al. α-Bisabolol, a nontoxic natural compound, strongly induces apoptosis in glioma cells. Biochem Biophys Res Commun. 2004;315: 589–594. https://doi.org/10.1016/j.bbrc.2004.01.088 14975741
64. Chen W, Hou J, Yin Y, Jang J, Zheng Z, Fan H, et al. α-Bisabolol induces dose- and time-dependent apoptosis in HepG2 cells via a Fas- and mitochondrial-related pathway, involves p53 and NFκB. Biochem Pharmacol. 2010;80: 247–254. https://doi.org/10.1016/j.bcp.2010.03.021 20346922
65. De Lucca AJ, Pauli A, Schilcher H, Sien T, Bhatnagar D, Walsh TJ. Fungicidal and Bactericidal Properties of Bisabolol and Dragosantol. J Essent Oil Res. Taylor & Francis; 2011;23: 47–54. doi: 10.1080/10412905.2011.9700457
66. Kamatou GPP, Viljoen AM. A Review of the Application and Pharmacological Properties of α-Bisabolol and α-Bisabolol-Rich Oils. J Am Oil Chem Soc. Springer Science & Business Media B.V.; 2010;87: 1–7. doi: 10.1007/s11746-009-1483-3
Článek vyšel v časopise
PLOS One
2019 Číslo 9
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Je libo čepici místo mozkového implantátu?
- Pomůže v budoucnu s triáží na pohotovostech umělá inteligence?
- AI může chirurgům poskytnout cenná data i zpětnou vazbu v reálném čase
- Nová metoda odlišení nádorové tkáně může zpřesnit resekci glioblastomů
Nejčtenější v tomto čísle
- Graviola (Annona muricata) attenuates behavioural alterations and testicular oxidative stress induced by streptozotocin in diabetic rats
- CH(II), a cerebroprotein hydrolysate, exhibits potential neuro-protective effect on Alzheimer’s disease
- Comparison between Aptima Assays (Hologic) and the Allplex STI Essential Assay (Seegene) for the diagnosis of Sexually transmitted infections
- Assessment of glucose-6-phosphate dehydrogenase activity using CareStart G6PD rapid diagnostic test and associated genetic variants in Plasmodium vivax malaria endemic setting in Mauritania
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy