#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

H-EM: An algorithm for simultaneous cell diameter and intensity quantification in low-resolution imaging cytometry


Autoři: Esteban Pardo aff001;  Germán González aff002;  Jason M. Tucker-Schwartz aff002;  Shivang R. Dave aff002;  Norberto Malpica aff001
Působiště autorů: Medical Image Analysis and Biometry Lab, Universidad Rey Juan Carlos, Móstoles, Madrid, Spain aff001;  Madrid-MIT M+Visión Consortium, Massachusetts Institute of Technology, Cambridge, MA, United States of America aff002
Vyšlo v časopise: PLoS ONE 14(9)
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pone.0222265

Souhrn

Fluorescent cytometry refers to the quantification of cell physical properties and surface biomarkers using fluorescently-tagged antibodies. The generally preferred techniques to perform such measurements are flow cytometry, which performs rapid single cell analysis by flowing cells one-by-one through a channel, and microscopy, which eliminates the complexity of the flow channel, offering multi-cell analysis at a lesser throughput. Low-magnification image-based cytometers, also called “cell astronomy” systems, hold promise of simultaneously achieving both instrumental simplicity and high throughput. In this magnification regime, a single cell is mapped to a handful of pixels in the image. While very attractive, this idea has, so far, not been proven to yield quantitative results of cell-labeling, mainly due to the poor signal-to-noise ratio present in those images and to partial volume effects. In this work we present a cell astronomy system that, when coupled with custom-developed algorithms, is able to quantify cell intensities and diameters reliably. We showcase the system using calibrated MESF beads and fluorescently stained leukocytes, achieving good population identification in both cases. The main contribution of the proposed system is in the development of a novel algorithm, H-EM, that enables inter-cluster separation at a very low magnification regime (2x). Such algorithm provides more accurate brightness estimates than DAOSTORM when compared to manual analysis, while fitting cell location, brightness, diameter, and background level concurrently. The algorithm first performs Fisher discriminant analysis to detect bright spots. From each spot an expectation-maximization algorithm is initialized over a heterogeneous mixture model (H-EM), this algorithm recovers both the cell fluorescence and diameter with sub-pixel accuracy while discriminating the background noise. Finally, a recursive splitting procedure is applied to discern individual cells in cell clusters.

Klíčová slova:

Physical sciences – Mathematics – Applied mathematics – Algorithms – Astronomical sciences – Astronomy – Observational astronomy – Optical astronomy – Research and analysis methods – Simulation and modeling – Imaging techniques – Fluorescence imaging – Spectrum analysis techniques – Spectrophotometry – Cytophotometry – Flow cytometry – Biology and life sciences – Cell biology – Cellular types – Animal cells – Blood cells – White blood cells – Lymphocytes – Monocytes – Granulocytes – Immune cells – Cytometry – Medicine and health sciences – Immunology


Zdroje

1. Shapiro HM. Practical flow cytometry. John Wiley & Sons; 2005.

2. Sage D, Kirshner H, Pengo T, Stuurman N, Min J, Manley S, et al. Quantitative evaluation of software packages for single-molecule localization microscopy. Nature methods. 2015;12(8):717–724. doi: 10.1038/nmeth.3442

3. Shapiro HM, Perlmutter NG. Personal cytometers: slow flow or no flow? Cytometry part A. 2006;69(7):620–630.

4. Shapiro HM. Cellular astronomy A foreseeable future in cytometry. Cytometry Part A. 2004;60(2):115–124.

5. Smal I, Loog M, Niessen W, Meijering E. Quantitative comparison of spot detection methods in fluorescence microscopy. Medical Imaging, IEEE Transactions on. 2010;29(2):282–301. doi: 10.1109/TMI.2009.2025127

6. Smal I, Niessen W, Meijering E. A new detection scheme for multiple object tracking in fluorescence microscopy by joint probabilistic data association filtering. In: Biomedical Imaging: From Nano to Macro, 2008. ISBI 2008. 5th IEEE International Symposium on. IEEE; 2008. p. 264–267.

7. Bright DS, Steel EB. Two-dimensional top hat filter for extracting spots and spheres from digital images. Journal of Microscopy. 1987;146(2):191–200.

8. Breen E, Joss G, Williams K. Locating objects of interest within biological images: The top hat box filter. J Comput-Assist Microsc. 1991;3:97–102.

9. Thomann D, Rines D, Sorger P, Danuser G. Automatic fluorescent tag detection in 3D with super-resolution: application to the analysis of chromosome movement. Journal of microscopy. 2002;208(1):49–64.

10. Sage D, Neumann FR, Hediger F, Gasser SM, Unser M. Automatic tracking of individual fluorescence particles: application to the study of chromosome dynamics. IEEE Transactions on Image Processing. 2005;14(9):1372–1383. doi: 10.1109/TIP.2005.852787

11. Zhang B, Fadili M, Starck JL, Olivo-Marin JC. Multiscale variance-stabilizing transform for mixed-Poisson-Gaussian processes and its applications in bioimaging. In: Image Processing, 2007. ICIP 2007. IEEE International Conference on. vol. 6. IEEE; 2007. p. VI–233.

12. Genovesio A, Liedl T, Emiliani V, Parak WJ, Coppey-Moisan M, Olivo-Marin JC. Multiple particle tracking in 3-D+ t microscopy: method and application to the tracking of endocytosed quantum dots. IEEE Transactions on Image Processing. 2006;15(5):1062–1070. doi: 10.1109/TIP.2006.872323

13. Janossy G, Shapiro H. Simplified cytometry for routine monitoring of infectious diseases. Cytometry Part B: Clinical Cytometry. 2008;74(S1):S6–S10.

14. Knapp W, Strobl H, Majdic O. Flow cytometric analysis of cell-surface and intracelluar antigens in leukemia diagnosis. Cytometry Part A. 1994;18(4):187–198.

15. Sterken C, Manfroid J. Astronomical photometry: a guide. vol. 175. Springer Science & Business Media; 2012.

16. Stetson PB. DAOPHOT: A computer program for crowded-field stellar photometry. Publications of the Astronomical Society of the Pacific. 1987;99(613):191. doi: 10.1086/131977

17. Small A, Stahlheber S. Fluorophore localization algorithms for super-resolution microscopy. Nature methods. 2014;11(3):267–279. doi: 10.1038/nmeth.2844

18. Wolter S, Löschberger A, Holm T, Aufmkolk S, Dabauvalle MC, Van De Linde S, et al. rapidSTORM: accurate, fast open-source software for localization microscopy. Nature methods. 2012;9(11):1040–1041. doi: 10.1038/nmeth.2224

19. Parthasarathy R. Rapid, accurate particle tracking by calculation of radial symmetry centers. Nature Methods. 2012;9(7):724–726. doi: 10.1038/nmeth.2071

20. Daostorm S. DAOSTORM: an algorithm for high-density super-resolution microscopy. Nat methods. 2011;8:279. doi: 10.1038/nmeth0411-279

21. Bobroff N. Position measurement with a resolution and noise-limited instrument. Review of Scientific Instruments. 1986;57(6):1152–1157. doi: 10.1063/1.1138619

22. Stone MB, Shelby SA, Veatch SL. Super-resolution microscopy: shedding light on the cellular plasma membrane. Chemical reviews. 2017;117(11):7457–7477. doi: 10.1021/acs.chemrev.6b00716

23. Shen H, Tauzin LJ, Baiyasi R, Wang W, Moringo N, Shuang B, et al. Single particle tracking: from theory to biophysical applications. Chemical Reviews. 2017;117(11):7331–7376. doi: 10.1021/acs.chemrev.6b00815

24. Schermelleh L, Heintzmann R, Leonhardt H. A guide to super-resolution fluorescence microscopy. The Journal of cell biology. 2010;190(2):165–175. doi: 10.1083/jcb.201002018

25. Hennig H, Rees P, Blasi T, Kamentsky L, Hung J, Dao D, et al. An open-source solution for advanced imaging flow cytometry data analysis using machine learning. Methods. 2017;112:201–210. doi: 10.1016/j.ymeth.2016.08.018

26. Kuksin D, Kuksin CA, Qiu J, Chan LLY. Cellometer image cytometry as a complementary tool to flow cytometry for verifying gated cell populations. Analytical biochemistry. 2016;503:1–7. doi: 10.1016/j.ab.2016.03.010

27. Arifulin E, Bragina E, Kurilo L, Sheval E. High-throughput analysis of TUNEL-stained sperm using image cytometry. Cytometry Part A. 2017;91(9):854–858.

28. Dempster AP, Laird NM, Rubin DB. Maximum likelihood from incomplete data via the EM algorithm. Journal of the royal statistical society Series B (methodological). 1977; p. 1–38.

29. Schwarz G, et al. Estimating the dimension of a model. The annals of statistics. 1978;6(2):461–464. doi: 10.1214/aos/1176344136

30. Im M, Chae H, Kim T, Park HH, Lim J, Oh EJ, et al. Comparative quantitative analysis of cluster of differentiation 45 antigen expression on lymphocyte subsets. The Korean journal of laboratory medicine. 2011;31(3):148–153. doi: 10.3343/kjlm.2011.31.3.148

31. Young B, Woodford P, O’Dowd G. Wheater’s functional histology: a text and colour atlas. Elsevier Health Sciences; 2013.

32. Rich RR, Fleisher TA, Shearer WT, Schroeder HW, Frew AJ, Weyand CM. Clinical Immunology E-Book: Principles and Practice. Elsevier Health Sciences; 2018. Available from: https://books.google.es/books?id=vXVKDwAAQBAJ.


Článek vyšel v časopise

PLOS One


2019 Číslo 9
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

plice
INSIGHTS from European Respiratory Congress
nový kurz

Současné pohledy na riziko v parodontologii
Autoři: MUDr. Ladislav Korábek, CSc., MBA

Svět praktické medicíny 3/2024 (znalostní test z časopisu)

Kardiologické projevy hypereozinofilií
Autoři: prof. MUDr. Petr Němec, Ph.D.

Střevní příprava před kolonoskopií
Autoři: MUDr. Klára Kmochová, Ph.D.

Všechny kurzy
Kurzy Podcasty Doporučená témata Časopisy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#