From In Situ to satellite observations of pelagic Sargassum distribution and aggregation in the Tropical North Atlantic Ocean
Autoři:
Anouck Ody aff001; Thierry Thibaut aff001; Léo Berline aff001; Thomas Changeux aff001; Jean-Michel André aff001; Cristèle Chevalier aff001; Aurélie Blanfuné aff001; Jean Blanchot aff001; Sandrine Ruitton aff001; Valérie Stiger-Pouvreau aff002; Solène Connan aff002; Jacques Grelet aff003; Didier Aurelle aff001; Mathilde Guéné aff004; Hubert Bataille aff005; Céline Bachelier aff003; Dorian Guillemain aff006; Natascha Schmidt aff001; Vincent Fauvelle aff001; Sophie Guasco aff001; Frédéric Ménard aff001
Působiště autorů:
Aix-Marseille Univ., Université de Toulon, CNRS, IRD, MIO UM 110, Marseille, France
aff001; Université de Bretagne Occidentale (UBO), Institut Universitaire Européen de la Mer (IUEM), LEMAR UMR 6539, Technopôle Brest-Iroise, Plouzané, France
aff002; IRD DR-OUEST, US191 IMAGO, Technopole de Brest-Iroise—Site de la Pointe du Diable, Plouzané, France
aff003; Université des Antilles, UMR BOREA, Campus de Fouillole, BP 592, Pointe-à-Pitre, Guadeloupe, France
aff004; IRD, IRD-Images, Marseille, France
aff005; Aix Marseille Univ, CNRS, IRD, IRSTEA, OSU PYTHEAS, Marseille, France
aff006
Vyšlo v časopise:
PLoS ONE 14(9)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0222584
Souhrn
The present study reports on observations carried out in the Tropical North Atlantic in summer and autumn 2017, documenting Sargassum aggregations using both ship-deck observations and satellite sensor observations at three resolutions (MSI-10 m, OLCI-300 m, VIIRS-750 m and MODIS-1 km). Both datasets reported that in summer, Sargassum aggregations were mainly observed off Brazil and near the Caribbean Islands, while they accumulated near the African coast in autumn. Based on in situ observations, we propose a five-class typology allowing standardisation of the description of in situ Sargassum raft shapes and sizes. The most commonly observed Sargassum raft type was windrows, but large rafts composed of a quasi-circular patch hundreds of meters wide were also observed. Satellite imagery showed that these rafts formed larger Sargassum aggregations over a wide range of scales, with smaller aggregations (of tens of m2 area) nested within larger ones (of hundreds of km2). Match-ups between different satellite sensors and in situ observations were limited for this dataset, mainly because of high cloud cover during the periods of observation. Nevertheless, comparisons between the two datasets showed that satellite sensors successfully detected Sargassum abundance and aggregation patterns consistent with in situ observations. MODIS and VIIRS sensors were better suited to describing the Sargassum aggregation distribution and dynamics at Atlantic scale, while the new sensors, OLCI and MSI, proved their ability to detect Sargassum aggregations and to describe their (sub-) mesoscale nested structure. The high variability in raft shape, size, thickness, depth and biomass density observed in situ means that caution is called for when using satellite maps of Sargassum distribution and biomass estimation. Improvements would require additional in situ and airborne observations or very high-resolution satellite imagery.
Klíčová slova:
Biology and life sciences – Organisms – Eukaryota – Plants – Algae – Ecology – Ecological metrics – Biomass – Earth sciences – Atmospheric science – Meteorology – Wind – Clouds – Atmospheric physics – Atmospheric dynamics – Atmospheric clouds – Geomorphology – Topography – Landforms – Islands – Marine and aquatic sciences – Bodies of water – Sargasso Sea – Geophysics – Engineering and technology – Transportation – Ships – Physical sciences – Physics – Ecology and environmental sciences
Zdroje
1. Liu F, Pang S, Chopin T, Gao S, Shan T, Zhao X, et al. Understanding the recurrent large-scale green tide in the Yellow Sea: Temporal and spatial correlations between multiple geographical, aquacultural and biological factors. Marine Environmental Research. 2013;83: 38–47. doi: 10.1016/j.marenvres.2012.10.007 23176870
2. Smetacek V, Zingone A. Green and golden seaweed tides on the rise. Nature. 2013;504: 84–88. doi: 10.1038/nature12860 24305152
3. Mineur F, Arenas F, Assis J, Davies AJ, Engelen AH, Fernandes F, et al. European seaweeds under pressure: Consequences for communities and ecosystem functioning. Journal of Sea Research. 2015;98: 91–108. doi: 10.1016/j.seares.2014.11.004
4. Lapointe BE, Burkholder JM, Alstyne KLV. Harmful Macroalgal Blooms in a Changing World: Causes, Impacts, and Management. Harmful Algal Blooms. John Wiley & Sons, Ltd; 2018. pp. 515–560. doi: 10.1002/9781118994672.ch15
5. Bouchon C, Bouchon-Navaro Y, Louis M. A first record of a Sargassum (Phaeophyta, Algae) outbreak in a Caribbean coral reef ecosystem. 1992. pp. 171–188. Available: http://aquaticcommons.org/12467/
6. Done TJ. Phase shifts in coral reef communities and their ecological significance. Hydrobiologia. 1992;247: 121–132. doi: 10.1007/BF00008211
7. Stiger V, Payri CE. Spatial and Seasonal Variations in the Biological Characteristics of Two Invasive Brown Algae, Turbinaria ornata (Turner) J. Agardh and Sargassum mangarevense (Grunow) Setchell (Sargassaceae, Fucales) Spreading on the Reefs of Tahiti (French Polynesia). Botanica Marina. 1999;42: 295–306. doi: 10.1515/BOT.1999.033
8. Stiger V, Payri C. Spatial and temporal patterns of settlement of the brown macroalgae Turbinaria ornata and Sargassum mangarevense in a coral reef on Tahiti. Marine Ecology Progress Series. 1999;191: 91–100. doi: 10.3354/meps191091
9. Rueness J. Sargassum muticum and other introduced Japanese macroalgae: Biological pollution of European coasts. Marine Pollution Bulletin. 1989;20: 173–176. doi: 10.1016/0025-326X(89)90488-8
10. Verlaque M. Checklist of introduced plants in the mediterranean—origins and impact on the environment and human activities. Oceanologica Acta. 1994;17: 1–23.
11. Staehr P, Pedersen M, Thomsen M, Wernberg T, Krause-Jensen D. Invasion of Sargassum muticum in Limfjorden (Denmark) and its possible impact on the indigenous macroalgal community. Marine Ecology Progress Series. 2000;207: 79–88. doi: 10.3354/meps207079
12. Direct Britton-Simmons K. and indirect effects of the introduced alga Sargassum muticum on benthic, subtidal communities of Washington State, USA. Marine Ecology Progress Series. 2004;277: 61–78. doi: 10.3354/meps277061
13. Plouguerné E, Lann KL, Connan S, Jechoux G, Deslandes E, Stiger-Pouvreau V. Spatial and seasonal variation in density, reproductive status, length and phenolic content of the invasive brown macroalga Sargassum muticum (Yendo) Fensholt along the coast of Western Brittany (France). Aquatic Botany. 85: 337–344.
14. Le Lann K, Connan S, Stiger-Pouvreau V. Phenology, TPC and size-fractioning phenolics variability in temperate Sargassaceae (Phaeophyceae, Fucales) from Western Brittany: Native versus introduced species. Marine Environmental Research. 2012;80: 11. doi: 10.1016/j.marenvres.2012.05.011 22770761
15. Tanniou A, Vandanjon L, Gonçalves O, Kervarec N, Stiger V. Rapid geographical differentiation of the European spread brown macroalga Sargassum muticum using HRMAS NMR and Fourier-Transform Infrared spectroscopy. Talanta. 2015;132: 451–456. doi: 10.1016/j.talanta.2014.09.002 25476330
16. Miller KA, Engle JM, Uwai S, Kawai H. First report of the Asian seaweed Sargassum filicinum Harvey (Fucales) in California, USA. Biol Invasions. 2007;9: 609–613. doi: 10.1007/s10530-006-9060-2
17. Komatsu T, Tatsukawa K, Filippi JB, Sagawa T, Matsunaga D, Mikami A, et al. Distribution of drifting seaweeds in eastern East China Sea. Journal of Marine Systems. 2007;67: 245–252. doi: 10.1016/j.jmarsys.2006.05.018
18. Riosmena-Rodríguez R, Boo GH, López-Vivas JM, Hernández-Velasco A, Sáenz-Arroyo A, Boo SM. The invasive seaweed Sargassum filicinum (Fucales, Phaeophyceae) is on the move along the Mexican Pacific coastline. Botanica Marina. 2012;55: 547–551. doi: 10.1515/bot-2012-0120
19. Marks LM, Salinas-Ruiz P, Reed DC, Holbrook SJ, Culver CS, Engle JM, et al. Range expansion of a non-native, invasive macroalga Sargassum horneri (Turner) C. Agardh, 1820 in the eastern Pacific. BioInvasions Records. 2015;4: 243–248.
20. Liu F, Liu X, Wang Y, Jin Z, Moejes FW, Sun S. Insights on the Sargassum horneri golden tides in the Yellow Sea inferred from morphological and molecular data. Limnology and Oceanography. 2018;63: 1762–1773. doi: 10.1002/lno.10806
21. Andréfouët S, Zubia M, Payri C. Mapping and biomass estimation of the invasive brown algae Turbinaria ornata(Turner) J. Agardh and Sargassum mangarevense (Grunow) Setchell on heterogeneous Tahitian coral reefs using 4-meter resolution IKONOS satellite data. Coral Reefs. 2004;23: 26–38. doi: 10.1007/s00338-003-0367-5
22. Butler JN. Studies of Sargassum and the Sargassum community. St Georges, Bermuda: Bermuda Biological Station for Research; 1983.
23. Winge Ø. The Sargasso Sea, Its Boundaries and Vegetation. Report on the Danish oceanographical expeditions 1908–1910 to the Mediterranean and adjacent seas. Copenhagen: A.F. Høst & søn; 1923.
24. Ardron J, Halpin P, Roberts J, Cleary J, Moffitt R, Donnelly B. Where is the Sargasso Sea? Sargasso Sea Alliance Science Report Series. 2011; 24.
25. Parr AE. Quantitative Observations on the Pelagic Sargassum Vegetation of the Western North Atlantic: With Preliminary Discussions of Morphology and Relationships. Bingham Oceanographic Foundation; 1939.
26. Gower J, Hu C, Borstad G, King S. Ocean Color Satellites Show Extensive Lines of Floating Sargassum in the Gulf of Mexico. IEEE Transactions on Geoscience and Remote Sensing. 2006;44: 3619–3625. doi: 10.1109/TGRS.2006.882258
27. Schell J, Goodwin D, Siuda A. Recent Sargassum Inundation Events in the Caribbean: Shipboard Observations Reveal Dominance of a Previously Rare Form. Oceanography. 2015;28: 8–10. doi: 10.5670/oceanog.2015.70
28. Amaral‐Zettler LA, Dragone NB, Schell J, Slikas B, Murphy LG, Morrall CE, et al. Comparative mitochondrial and chloroplast genomics of a genetically distinct form of Sargassum contributing to recent “Golden Tides” in the Western Atlantic. Ecol Evol. 2017;7: 516–525. doi: 10.1002/ece3.2630 28116048
29. Gower J, Young E, King S. Satellite images suggest a new Sargassum source region in 2011. Remote Sensing Letters. 2013;4: 764–773. doi: 10.1080/2150704X.2013.796433
30. Wang M, Hu C. Mapping and quantifying Sargassum distribution and coverage in the Central West Atlantic using MODIS observations. Remote Sensing of Environment. 2016; doi: 10.1016/j.rse.2016.04.019
31. Wang M, Hu C. Predicting Sargassum blooms in the Caribbean Sea from MODIS observations. Geophysical Research Letters. 2017;44: 3265–3273. doi: 10.1002/2017GL072932
32. Putman NF, Goni GJ, Gramer LJ, Hu C, Johns EM, Trinanes J, et al. Simulating transport pathways of pelagic Sargassum from the Equatorial Atlantic into the Caribbean Sea. Progress in Oceanography. 2018;165: 205–214. doi: 10.1016/j.pocean.2018.06.009
33. Stoner AW. Pelagic Sargassum: Evidence for a major decrease in biomass. Deep Sea Research Part A Oceanographic Research Papers. 1983;30: 469–474. doi: 10.1016/0198-0149(83)90079-1
34. Stoner A, Greening H. Geographic variation in the macrofaunal associates of pelagic Sargassum and some biogeographic implications. Marine Ecology Progress Series. 1984;20: 185–192. doi: 10.3354/meps020185
35. Siuda A. Summary of Sea Education Association Long-term Sargasso Sea Surface Net Data. Sargasso Sea Alliance Science Report Series. 2011; 18.
36. Thiel M, Gutow L. The ecology of rafting in the marine environment. I. The floating substrata. Oceanography and Marine Biology: An Annual Review. 2005;42: 181–264.
37. Reporting Site: Pelagic Sargassum in the Caribbean—2018. In: The University of Southern MISSISSIPPI, Gulf Coast Reasearch Laboratory [Internet]. [cited 11 Dec 2018]. Available: http://gcrl.usm.edu/sargassum/sargassum.observation.form.php
38. Marmorino GO, Miller WD, Smith GB, Bowles JH. Airborne imagery of a disintegrating Sargassum drift line. Deep Sea Research Part I: Oceanographic Research Papers. 2011;58: 316–321. doi: 10.1016/j.dsr.2011.01.001
39. Wang M, Hu C, Cannizzaro J, English D, Han X, Naar D, et al. Remote sensing of Sargassum biomass, nutrients, and pigments. Geophysical Research Letters. 2018;0. doi: 10.1029/2018GL078858
40. Gower JFR, King SA. Distribution of floating Sargassum in the Gulf of Mexico and the Atlantic Ocean mapped using MERIS. International Journal of Remote Sensing. 2011;32: 1917–1929. doi: 10.1080/01431161003639660
41. Sakamoto SX, Sasa S, Sawayama S, Tsujimoto R, Terauchi G, Yagi H, et al. Impact of huge tsunami in March 2011 on seaweed bed distributions in Shizugawa Bay, Sanriku Coast, revealed by remote sensing. Proceedings of SPIE—The International Society for Optical Engineering. Kyoto, Japan; 2012. pp. 85251B-1: 85251B-7. doi: 10.1117/12.999308
42. Dierssen HM, Chlus A, Russell B. Hyperspectral discrimination of floating mats of seagrass wrack and the macroalgae Sargassum in coastal waters of Greater Florida Bay using airborne remote sensing. Remote Sensing of Environment. 2015;167: 247–258. doi: 10.1016/j.rse.2015.01.027
43. Hu C, Feng L, Hardy RF, Hochberg EJ. Spectral and spatial requirements of remote measurements of pelagic Sargassum macroalgae. Remote Sensing of Environment. 2015;167: 229–246. doi: 10.1016/j.rse.2015.05.022
44. Xing Q, Guo R, Wu L, An D, Cong M, Qin S, et al. High-Resolution Satellite Observations of a New Hazard of Golden Tides Caused by Floating Sargassum in Winter in the Yellow Sea. IEEE Geoscience and Remote Sensing Letters. 2017;14: 1815–1819. doi: 10.1109/LGRS.2017.2737079
45. Qi L, Hu C, Wang M, Shang S, Wilson C. Floating Algae Blooms in the East China Sea. Geophysical Research Letters. 2017;44: 11,501–11,509. doi: 10.1002/2017GL075525
46. Andréfouët S, Payri C, Van Wynsberge S, Lauret O, Alefaio S, Preston G, et al. The timing and the scale of the proliferation of Sargassum polycystum in Funafuti Atoll, Tuvalu. J Appl Phycol. 2017;29: 3097–3108. doi: 10.1007/s10811-017-1165-8
47. Wang M, Hu C. On the continuity of quantifying floating algae of the Central West Atlantic between MODIS and VIIRS. International Journal of Remote Sensing. 2018;39: 3852–3869. doi: 10.1080/01431161.2018.1447161
48. Setyawidati N, Kaimuddin AH, Wati IP, Helmi M, Widowati I, Rossi N, et al. Percentage cover, biomass, distribution, and potential habitat mapping of natural macroalgae, based on high-resolution satellite data and in situ monitoring, at Libukang Island, Malasoro Bay, Indonesia. J Appl Phycol. 2018;30: 159–171. doi: 10.1007/s10811-017-1208-1
49. Webster RK, Linton T. Development and implementation of Sargassum Early Advisory System (SEAS). Shore & Beach. 2013;81: 1–6. doi: 10.1002/9781118485545.ch1
50. Hu C, Hardy R, Ruder E, Geggel A, Feng L, Powers S, et al. Sargassum coverage in the northeastern Gulf of Mexico during 2010 from Landsat and airborne observations: Implications for the Deepwater Horizon oil spill impact assessment. Marine Pollution Bulletin. 2016;107: 15–21. doi: 10.1016/j.marpolbul.2016.04.045 27170625
51. de Vaugelas J, Meinesz A, Antolic B, Ballesteros E, Belsher T, Cassar N, et al. Standardization proposal for the mapping of Caulerpa taxifolia expansion in the Mediterranean Sea. Oceanologica Acta. 1999;22: 85–94. doi: 10.1016/S0399-1784(99)80035-8
52. Brodie J, Ash LV, Tittley I, Yesson C. A comparison of multispectral aerial and satellite imagery for mapping intertidal seaweed communities. Aquatic Conservation: Marine and Freshwater Ecosystems. 2018;28: 872–881. doi: 10.1002/aqc.2905
53. Schmidt N, Fauvelle V, Ody A, Castro-Jiménez J, Jouanno J, Changeux T, et al. The Amazon River: A Major Source of Organic Plastic Additives to the Tropical North Atlantic? Environ Sci Technol. 2019;53: 7513–7521. doi: 10.1021/acs.est.9b01585 31244083
54. Gower J, King S, Borstad G, Brown L. Detection of intense plankton blooms using the 709 nm band of the MERIS imaging spectrometer. International Journal of Remote Sensing. 2005;26: 2005–2012. doi: 10.1080/01431160500075857
55. Hu C. A novel ocean color index to detect floating algae in the global oceans. Remote Sensing of Environment. 2009;113: 2118–2129. doi: 10.1016/j.rse.2009.05.012
56. Clerc S, MPC Team. L1C Data Quality Report [Internet]. 2018 Nov. Report No.: 32. Available: https://sentinel.esa.int/documents/247904/685211/Sentinel-2_L1C_Data_Quality_Report
57. Lellouche J-M, Le Galloudec O, Drevillon M, Regnier C, Greiner E, Garric G, et al. Evaluation of global monitoring and forecasting systems at Mercator Ocean. Ocean Science. 2013;9: 57–81. doi: 10.5194/os-9-57-2013
58. Owens RG, Tim Hewson. ECMWF Forecast User Guide. 2018; Available: https://software.ecmwf.int/wiki/display/FUG/Forecast+User+Guide
59. Arístegui J, González-Ramos AJ, Benavides M. Informe sobre la presencia de Trichodesmium spp. en aguas de Canarias, en el verano de 2017. Technical report Servicio Integral de Tecnología Marina (SITMA), Canaria. 2017; 28.
60. Franz B, Meister G. MODIS/Aqua Straylight Flagging and Masking. In: NASA Ocean Color [Internet]. 19 Feb 2005 [cited 11 Dec 2018]. Available: https://oceancolor.gsfc.nasa.gov/reprocessing/r2005/aqua/modisa_repro1_stlight/
61. Krummel O. Die nordatlantische Sargassosee. Petermann’s Geographische Mitteilungen. 1891;37: 129–141.
62. Howard KL, Menzies RJ. Distribution and Production of Sargassum in the Waters off the Carolina Coast. Botanica Marina. 1969;12: 244–254. doi: 10.1515/botm.1969.12.1–4.244
63. Franks JS, Johnson DR, Ko D-S, Sanchez-Rubio G, Hendon JR, Lay M. Unprecedented influx of pelagic Sargassum along Caribbean island coastlines during summer 2011. Proceedings of the 64th Gulf and Caribbean Fisheries Institute. Puerto Morelos, Mexico; 2011. pp. 6–8.
64. Woodcock AH. Winds subsurface pelagic Sargassum and Langmuir circulations. Journal of Experimental Marine Biology and Ecology. 1993;170: 117–125. doi: 10.1016/0022-0981(93)90132-8
65. Zhong Y, Bracco A, Villareal TA. Pattern formation at the ocean surface: Sargassum distribution and the role of the eddy field. Limnol Oceanogr. 2012;2: 12–27. doi: 10.1215/21573689-1573372
66. Lehahn Y, d’Ovidio F, Lévy M, Heifetz E. Stirring of the northeast Atlantic spring bloom: A Lagrangian analysis based on multisatellite data. Journal of Geophysical Research: Oceans. 2007;112. doi: 10.1029/2006JC003927
67. Hernández-Carrasco I, Orfila A, Rossi V, Garçon V. Effect of small scale transport processes on phytoplankton distribution in coastal seas. Scientific Reports. 2018;8: 8613. doi: 10.1038/s41598-018-26857-9 29872142
68. UNEP. PAPER ON THE SARGASSUM SEAWEED INVASION OF WEST AFRICAN AND CARIBBEAN COASTS UNEA-2 SIDE EVENT—Caribbean Environment Programme [Internet]. United Nations Environment Programme; 2016. Available: http://www.cep.unep.org/meetings/documents/16c7fb9b5550ebfc64705aacb956fd9b
69. DEAL Guadeloupe. Mesures pour le ramassage des sargasses en 48h [Internet]. 12 Jun 2018 [cited 11 Dec 2018]. Available: http://www.guadeloupe.developpement-durable.gouv.fr/mesures-pour-le-ramassage-des-sargasses-en-48h-a2366.html
70. Satellite-based Sargassum Watch System (SaWS). In: University of South Florida [Internet]. [cited 6 Dec 2018]. Available: https://optics.marine.usf.edu/projects/SaWS.html
71. Brooks MT, Coles VJ, Hood RR, Gower JFR. Factors controlling the seasonal distribution of pelagic Sargassum. Marine Ecology Progress Series. 2018;599: 1–18. doi: 10.3354/meps12646
72. Hu C, Cannizzaro J, Carder KL, Muller-Karger FE, Hardy R. Remote detection of Trichodesmium blooms in optically complex coastal waters: Examples with MODIS full-spectral data. Remote Sensing of Environment. 2010;114: 2048–2058. doi: 10.1016/j.rse.2010.04.011
Článek vyšel v časopise
PLOS One
2019 Číslo 9
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Je libo čepici místo mozkového implantátu?
- Pomůže v budoucnu s triáží na pohotovostech umělá inteligence?
- AI může chirurgům poskytnout cenná data i zpětnou vazbu v reálném čase
- Nová metoda odlišení nádorové tkáně může zpřesnit resekci glioblastomů
Nejčtenější v tomto čísle
- Graviola (Annona muricata) attenuates behavioural alterations and testicular oxidative stress induced by streptozotocin in diabetic rats
- CH(II), a cerebroprotein hydrolysate, exhibits potential neuro-protective effect on Alzheimer’s disease
- Comparison between Aptima Assays (Hologic) and the Allplex STI Essential Assay (Seegene) for the diagnosis of Sexually transmitted infections
- Assessment of glucose-6-phosphate dehydrogenase activity using CareStart G6PD rapid diagnostic test and associated genetic variants in Plasmodium vivax malaria endemic setting in Mauritania
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy