Mapping online hate: A scientometric analysis on research trends and hotspots in research on online hate
Autoři:
Ahmed Waqas aff001; Joni Salminen aff003; Soon-gyo Jung aff003; Hind Almerekhi aff005; Bernard J. Jansen aff003
Působiště autorů:
University of Liverpool, Liverpool, United Kingdom
aff001; CMH Lahore Medical College & Institute of Dentistry, Lahore, Pakistan
aff002; Qatar Computing Research Institute, Hamad Bin Khalifa University, Doha, Qatar
aff003; Turku School of Economics at the University of Turku, Turku, Finland
aff004; Hamad Bin Khalifa University, Doha, Qatar
aff005
Vyšlo v časopise:
PLoS ONE 14(9)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0222194
Souhrn
Internet and social media participation open doors to a plethora of positive opportunities for the general public. However, in addition to these positive aspects, digital technology also provides an effective medium for spreading hateful content in the form of cyberbullying, bigotry, hateful ideologies, and harassment of individuals and groups. This research aims to investigate the growing body of online hate research (OHR) by mapping general research indices, prevalent themes of research, research hotspots, and influential stakeholders such as organizations and contributing regions. For this, we use scientometric techniques and collect research papers from the Web of Science core database published through March 2019. We apply a predefined search strategy to retrieve peer-reviewed OHR and analyze the data using CiteSpace software by identifying influential papers, themes of research, and collaborating institutions. Our results show that higher-income countries contribute most to OHR, with Western countries accounting for most of the publications, funded by North American and European funding agencies. We also observed increased research activity post-2005, starting from more than 50 publications to more than 550 in 2018. This applies to a number of publications as well as citations. The hotbeds of OHR focus on cyberbullying, social media platforms, co-morbid mental disorders, and profiling of aggressors and victims. Moreover, we identified four main clusters of OHR: (1) Cyberbullying, (2) Sexual solicitation and intimate partner violence, (3) Deep learning and automation, and (4) Extremist and online hate groups, which highlight the cross-disciplinary and multifaceted nature of OHR as a field of research. The research has implications for researchers and policymakers engaged in OHR and its associated problems for individuals and society.
Klíčová slova:
Adolescents – Behavior – Citation analysis – Computer and information sciences – Internet – Social media – Social research – Scientometrics
Zdroje
1. Pacheco E, Melhuish N. Online Hate Speech: A Survey on Personal Experiences and Exposure Among Adult New Zealanders. SSRN Electronic Journal. 2018.
2. Salminen J, Almerekhi H, Milenković M, Jung S, Kawak H, Jansen B. Anatomy of Online Hate: Developing a Taxonomy and Machine Learning Models for Identifying and Classifying Hate in Online News Media. Proceedings of The International AAAI Conference on Web and Social Media (ICWSM 2018). San Francisco; 2018.
3. Study AM, Selkie EM, Kota R, Chan Y, Moreno M. Use in Female College Students : 2015;18: 79–86. doi: 10.1089/cyber.2014.0371 25684608
4. Hinduja S, Patchin JW. Bullying, cyberbullying, and suicide. Arch Suicide Res. 2010;14: 206–221. doi: 10.1080/13811118.2010.494133 20658375
5. Kowalski RM, Limber SP. Electronic Bullying Among Middle School Students. J Adolesc Heal. 2007;41: 22–30. doi: 10.1016/j.jadohealth.2007.08.017 18047942
6. Whittaker E, Kowalski RM. Cyberbullying Via Social Media. J Sch Violence. Routledge; 2015;14: 11–29. doi: 10.1080/15388220.2014.949377
7. Kaakinen M, Oksanen A, Räsänen P. Did the Risk of Exposure to Online Hate Increase After the November 2015 Paris Attacks ? A Group Relations Approach Computers in Human Behavior Did the risk of exposure to online hate increase after the November 2015 Paris attacks? A group relations appr. Comput Human Behav. Elsevier Ltd; 2017;78: 90–97.
8. Pew Research Center. Online harassment 2017 [Internet]. 2017. https://www.pewinternet.org/2017/07/11/online-harassment-2017/
9. Eddington SM. The Communicative Constitution of Hate Organizations Online: A Semantic Network Analysis of “Make America Great Again.” 2018;
10. Gagliardone I. Mapping and Analysing Hate Speech Online. Ssrn. 2015;
11. Olteanu A, Castillo C, Boy J, Varshney KR. The Effect of Extremist Violence on Hateful Speech Online. 2018; http://arxiv.org/abs/1804.05704
12. Chau M, Xu J. Mining communities and their relationships in blogs: A study of online hate groups. Int J Hum Comput Stud. 2007;65: 57–70. doi: 10.1016/j.ijhcs.2006.08.009
13. Awan I. Cyber-Extremism: Isis and the Power of Social Media. Society; 2017; 138–149.
14. Minei E, Matusitz J. Cyberspace as a new arena for terroristic propaganda: an updated examination. Poiesis Prax. 2012;9: 163–176. doi: 10.1007/s10202-012-0108-3 23205002
15. Salminen J, Veronesi F, Almerekhi H, Jung S, Jansen B. Online Hate Interpretation Varies by Country, But More by Individual: A Statistical Analysis Using Crowdsourced Ratings. Proceedings of The Fifth International Conference on Social Networks Analysis, Management and Security (SNAMS—2018). The Fifth International Conference on Social Networks Analysis, Management and Security (SNAMS—2018),. Valencia; 2018.
16. Gerstenfeld PB, Grant DR, Chiang C-P. Hate Online: A Content Analysis of Extremist Internet Sites. Anal Soc Issues Public Policy. 2003;3: 29–44. doi: 10.1111/j.1530-2415.2003.00013.x
17. Watts LK, Wagner J, Velasquez B, Behrens PI. Cyberbullying in higher education: A literature review. Comput Human Behav. Elsevier Ltd; 2017;69: 268–274. doi: 10.1016/j.chb.2016.12.038
18. Correa D, Sureka A. Solutions to Detect and Analyze Online Radicalization: A Survey. 2013;V: 1–30. http://arxiv.org/abs/1301.4916
19. Zainudin NM, Zainal KH, Hasbullah NA, Wahab NA, Ramli S, Washington ET, et al. Cyberbullying: A Review of the Literature. Comput Educ. 2015;2: 1–9.
20. Tokunaga RS. Following you home from school: A critical review and synthesis of research on cyberbullying victimization. Comput Human Behav. Elsevier Ltd; 2010;26: 277–287. doi: 10.1016/j.chb.2009.11.014
21. British Institute of Human Rights. Mapping study on projects against hate speech online. 2012;2: 1–57. https://rm.coe.int/16807023b4
22. Waltman MS, Mattheis AA. Understanding Hate Speech. Oxford Res Encycl Commun. 2017; 1–30. doi: 10.1093/acrefore/9780190228613.013.422
23. Gagliardone I. MECHACHAL: Online debates and elections in Ethiopia. From hate speech to engagement in social media. 2016.
24. Hess D. Science Studies: An advanced introduction. New York: New York University Press; 1997.
25. Naveed S, Waqas A, Majeed S, Zeshan M, Jahan N, Haaris Sheikh M. Child psychiatry: A scientometric analysis 1980–2016. F1000Research. 2017;6: 1293. doi: 10.12688/f1000research.12069.1 28944045
26. Chen C. CiteSpace II: Detecting and Visualizing Emerging Trends. J Am Soc Inf Sci. 2006.
27. Chen C. The centrality of pivotal points in the evolution of scientific networks. Proceedings of the 10th international conference on Intelligent user interfaces—IUI ‘05. 2005.
28. Clarivate analytics. Web of Science platform [Internet]. https://clarivate.libguides.com/webofscienceplatform/alldb
29. Salminen J, Almerekhi H, Dey P, Jansen B. Inter-rater agreement for social computing studies. Proceedings of The Fifth International Conference on Social Networks Analysis, Management and Security (SNAMS—2018). Valencia; 2018.
30. Perspective API. Alphabet [Internet]. 2018 [cited 21 May 2019]. https://www.perspectiveapi.com/#/
31. Small H. Co‐citation in the scientific literature: A new measure of the relationship between two documents. J Am Soc Inf. 1973;24: 265–9. Available: http://onlinelibrary.wiley.com/doi/10.1002/asi.4630240406/abstract
32. Raskauskas J, Stoltz AD. Involvement in traditional and electronic bullying among adolescents. Dev Psychol. 2007;43: 564–575. doi: 10.1037/0012-1649.43.3.564 17484571
33. Smith PK, Mahdavi J, Carvalho M, Fisher S, Russell S, Tippett N. Cyberbullying: Its nature and impact in secondary school pupils. J Child Psychol Psychiatry Allied Discip. 2008;49: 376–385. doi: 10.1111/j.1469-7610.2007.01846.x 18363945
34. Dehue F, Bolman C, Völlink T. Cyberbullying: Youngsters’ Experiences and Parental Perception. CyberPsychology Behav. 2008;11: 217–223. doi: 10.1089/cpb.2007.0008 18422417
35. Slonje R, Smith PK. Cyberbullying: Another main type of bullying?: Personality and Social Sciences. Scand J Psychol. 2008;49: 147–154.
36. Erdur-Baker Ö. Cyberbullying and its correlation to traditional bullying, gender and frequent and risky usage of internet-mediated communication tools. New Media Soc. 2010;12: 109–125. doi: 10.1177/1461444809341260
37. Juvonen J, Gross EF. Extending the school grounds?—Bullying experiences in cyberspace. J Sch Health. 2008;78: 496–505. doi: 10.1111/j.1746-1561.2008.00335.x 18786042
38. Ybarra ML, Mitchell KJ. Prevalence and Frequency of Internet Harassment Instigation: Implications for Adolescent Health. J Adolesc Heal. 2007;41: 189–195. doi: 10.1016/j.jadohealth.2007.03.005 17659224
39. Calvete E, Orue I, Estévez A, Villardón L, Padilla P. Cyberbullying in adolescents: Modalities and aggressors’ profile. Comput Human Behav. 2010;26: 1128–1135. doi: 10.1016/j.chb.2010.03.017
40. Borrajo E, Gámez-Guadix M, Pereda N, Calvete E. The development and validation of the cyber dating abuse questionnaire among young couples. Comput Human Behav. Elsevier Ltd; 2015;48: 358–365. doi: 10.1016/j.chb.2015.01.063
41. Mitchell KJ, Finkelhor D, Wolak J. Youth Internet Users at Risk for the Most Serious Online Sexual Solicitations. Am J Prev Med. 2007;32: 532–537. doi: 10.1016/j.amepre.2007.02.001 17533070
42. Zweig JM, Dank M, Yahner J, Lachman P. The Rate of Cyber Dating Abuse Among Teens and How It Relates to Other Forms of Teen Dating Violence. J Youth Adolesc. 2013;42: 1063–1077. doi: 10.1007/s10964-013-9922-8 23412689
43. Mishna F, Cook C, Gadalla T, Daciuk J, Solomon S. Cyber Bullying Behaviours among Middle and High School Students. Am J Orthopsychiatry. 2010;80: 362–374. doi: 10.1111/j.1939-0025.2010.01040.x 20636942
44. Kowalski RM, Giumetti GW, Schroeder AN, Reese HH. Chapter 14 Cyber Bullying Among College Students: Evidence from Multiple Domains of College Life. 2012. pp. 293–321.
45. Marcum CD, Higgins GE, Ricketts ML. Potential Factors of Online Victimization of Youth: An Examination of Adolescent Online Behaviors Utilizing Routine Activity Theory. Deviant Behav. 2010;31: 381–410. doi: 10.1080/01639620903004903
46. Ybarra ML, Mitchell KJ. Youth engaging in online harassment: Associations with caregiver-child relationships, internet use, and personal characteristics. J Adolesc. 2004;27: 319–336. doi: 10.1016/j.adolescence.2004.03.007 15159091
47. Aylett R, Vala M, Sequeira P, Paiva A. FearNot!–An Emergent Narrative Approach to Virtual Dramas for Anti-bullying Education. Virtual Storytelling Using Virtual Reality Technologies for Storytelling. Berlin, Heidelberg: Springer Berlin Heidelberg; pp. 202–205.
48. Finn J, Banach M. Victimization Online: The Downside of Seeking Human Services for Women on the Internet. CyberPsychology Behav. 2000;3: 785–796. doi: 10.1089/10949310050191764
49. Madigan S, Villani V, Azzopardi C, … DL-J of A, 2018 undefined. The prevalence of unwanted online sexual exposure and solicitation among youth: a meta-analysis. ElsevierPaperpile. https://www.sciencedirect.com/science/article/pii/S1054139X18301344
50. Communication MA-CJ of, 2015 undefined. Towards a cybervictimology: Cyberbullying, routine activities theory, and the anti-sociality of social media. cjc-online.caPaperpile. http://cjc-online.ca/index.php/journal/article/view/2863
51. Atighetchi M, Pal P, Webber F, Jones C. Adaptive use of network-centric mechanisms in cyber-defense. Proceedings—6th IEEE International Symposium on Object-Oriented Real-Time Distributed Computing, ISORC 2003. 2003.
52. Agrawal S, Awekar A. Deep Learning for Detecting Cyberbullying Across Multiple Social Media Platforms. 2018. pp. 141–153.
53. Pitsilis GK, Ramampiaro H, Langseth H. Effective hate-speech detection in Twitter data using recurrent neural networks. Appl Intell. 2018;48: 4730–4742. doi: 10.1007/s10489-018-1242-y
54. Thompson L. “I can be your Tinder nightmare”: Harassment and misogyny in the online sexual marketplace. Fem Psychol. 2018;28: 69–89. doi: 10.1177/0959353517720226
55. Anzovino M, Fersini E, Rosso P. Automatic Identification and Classification of Misogynistic Language on Twitter. 2018. pp. 57–64. doi: 10.1007/978-3-319-91947-8_6
56. Farkas J, Schou J, Neumayer C. Platformed antagonism: racist discourses on fake Muslim Facebook pages. Crit Discourse Stud. 2018;15: 463–480. doi: 10.1080/17405904.2018.1450276
57. Chen C. The CiteSpace Manual v1.05. College of Computing and Informatics. 2015.
58. Gorman JO, Shum DHK, Halford WK, Ogilvie J. World Trends in Psychological Research Output and Impact. 2012;1: 268–283.
59. Diepeveen S, Larivi V, Pollitt A, Grant J, Montr D. International comparative performance of mental health research, 1980–2011. 2013; 1340–1347. 23452564
60. Confraria H, Mira M, Wang L. Determinants of citation impact: A comparative analysis of the Global South versus the Global North. Res Policy. Elsevier B.V.; 2016; doi: 10.1016/j.respol.2016.11.004
61. Moed HF. The impact-factors debate: the ISI’s uses and limits. Nature. 2002;415: 731. doi: 10.1038/415731a 11845176
62. Web of Science Core Collection: Web of Science: Summary of Coverage [Internet]. 2019. https://clarivate.libguides.com/woscc/coverage
Článek vyšel v časopise
PLOS One
2019 Číslo 9
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Je libo čepici místo mozkového implantátu?
- Pomůže v budoucnu s triáží na pohotovostech umělá inteligence?
- AI může chirurgům poskytnout cenná data i zpětnou vazbu v reálném čase
- Nová metoda odlišení nádorové tkáně může zpřesnit resekci glioblastomů
Nejčtenější v tomto čísle
- Graviola (Annona muricata) attenuates behavioural alterations and testicular oxidative stress induced by streptozotocin in diabetic rats
- CH(II), a cerebroprotein hydrolysate, exhibits potential neuro-protective effect on Alzheimer’s disease
- Comparison between Aptima Assays (Hologic) and the Allplex STI Essential Assay (Seegene) for the diagnosis of Sexually transmitted infections
- Assessment of glucose-6-phosphate dehydrogenase activity using CareStart G6PD rapid diagnostic test and associated genetic variants in Plasmodium vivax malaria endemic setting in Mauritania
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy