Rare earth elements in paddy fields from eroded granite hilly land in a southern China watershed
Autoři:
Haibin Chen aff001; Zhibiao Chen aff001; Zhiqiang Chen aff001; Qianyi Ma aff001; Qingqing Zhang aff001
Působiště autorů:
College of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian, People’s Republic of China
aff001; Key Laboratory of Humid Subtropical Eco-geographical Process (Fujian Normal University), Ministry of Education, Fuzhou, Fujian, People’s Republic of China
aff002; School of History and Geography, Minnan Normal University, Zhangzhou, Fujian, People’s Republic of China
aff003
Vyšlo v časopise:
PLoS ONE 14(9)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0222330
Souhrn
There are large amounts of ion-adsorption rare earth resources in the granite red soil region of southern China, and exploitation of rare earth elements (REEs) has caused serious soil erosion and soil pollution in the area. In this study, the spatial variability of soil REEs in Zhuxi watershed, Changting County, southern China, was analyzed using a geostatistics method. The analysis produced several important results: (1) The content of total rare earth elements (TREEs) in the soil samples ranged from 56.04 to 951.76 mg kg−1, with a mean value of 255.34 mg kg−1, which was higher than the background value of soil in China. The REE variables showed strong positive Ce anomalies and strong negative Eu anomalies, with mean values of 2.26 and 0.44, respectively. (2) The contents of TREEs in five subtypes of the soils were different, but they had broadly similar curves of chondrite-normalized REE patterns, with steeper patterns from La to Eu and flatter patterns from Eu to Y. (3) The spatial variability of light rare earth elements (LREEs) was mainly affected by natural factors, but the spatial variabilities of heavy rare earth elements (HREEs) and TREEs were influenced by the combination of natural factors and anthropogenic factors. Soil erosion can contribute significantly to REE migration, especially for HREEs. (4) The distribution of TREEs showed that the high content of TREEs was in the lowland of the western watershed. By comparing the distributions of TREEs in paddy fields and hilly land, we found that the area with a high content of TREEs was greater in paddy fields than in hilly land, so we deduced that REEs migrate from hilly land to the paddy field and accumulate in the soil there.
Klíčová slova:
Earth sciences – Geomorphology – Erosion – Mineralogy – Minerals – Granite – Geography – Geoinformatics – Geostatistics – Cartography – Topographic maps – Physical sciences – Chemistry – Chemical elements – Mathematics – Probability theory – Probability distribution – Skewness – Normal distribution – Computer and information sciences – Ecology and environmental sciences – Pollution – Water pollution
Zdroje
1. IUPAC. Nomenclature of Inorganic Chemistry: IUPAC Recommendations 2005. Cambridge University Press, Cambridge, UK. 2005.
2. Sukumaran PV. Elements that rule the world: Impending REE metal crisis. J Geo Soc India. 2012;80(2):295–295. doi: 10.1007/s12594-012-0144-6
3. Liu J, Jiang Y, Xie P, Li Q. Geochemistry of rare earth elements and yttrium in a Ge-poor coal from the Wulantuga ore deposit, Inner Mongolia, North China. Int J Coal Sci Technol. 2014;1(4):390–394. doi: 10.1007/s40789-015-0052-7
4. Long KR, Gosen BSV, Foley NK, Cordier D. The Principal Rare Earth Elements Deposits of the United States: A Summary of Domestic Deposits and a Global Perspective. Non-Renewable Resource Issues. Springer, Netherlands. 2010;131–155. doi: 10.1007/978-90-481-8679-2_7
5. Gao Z, Zhou Q. Contamination from rare earth ore strip mining and its impacts on resources and eco-environment. Chinese J Eco. 2011;12(12):2915–2922.
6. Kynicky J, Smith MP, Xu C. Diversity of rare earth deposits: The key example of China. Elements. 2012;8(5):361–367. doi: 10.2113/gselements.8.5.361
7. Su W. Economic and Policy Analysis of China's Rare Earth Industry. Beijing: China Financial and Economic Publishing House. 2009.
8. Cao X, Wang X, Zhao G. Assessment of the bioavailability of rare earth elements in soils by chemical fractionation and multiple regression analysis. Chemosphere. 2000;40(1):23–28. doi: 10.1016/S0045-6535(99)00225-8 10665441
9. D'Aquino L, Morgana M, Carboni MA, Staiano M, Antisari MV. Re M, et al. Effect of some rare earth elements on the growth and lanthanide accumulation in different Trichoderma strains. Soil Biol Biochem. 2009;41(12):2406–2413. doi: 10.1016/j.soilbio.2009.08.012
10. Klaudia B, Marta L, Jolanta K, Anna B, Mirosław M, Przemysław N, et al. Relations between rare earth elements accumulation in Taraxacum officinale L. and land use in an urban area—A preliminary study. Ecol Indic. 2018;94(1):22–27. doi: 10.1016/j.ecolind.2018.06.046
11. Wang B, Xia D, Yu Y, Chen H, Jia J. Source apportionment of soil-contamination in Baotou City (North China) based on a combined magnetic and geochemical approach. Sci Total Enviro. 2018;642:95–104. doi: 10.1016/j.scitotenv.2018.06.050
12. Wang L, Guo Z, Xiao X, Chen T, Liao X, Song J, et al. Heavy metal pollution of soils and vegetables in the midstream and downstream of the Xiangjiang River, Hunan Province. J Geog Sci. 2008;18(3):353–362. doi: 10.1007/s11442-008-0353-5
13. Li X, Chen Z, Chen Z. Distribution and fractionation of rare earth elements in soil-water system and human blood and hair from a mining area in southwest Fujian Province, China. Environ Earth Sci. 2014;72(9):3599–3608. doi: 10.1007/s12665-014-3271-0
14. Li X, Chen Z, Chen Z, Zhang Y. A human health risk assessment of rare earth elements in soil and vegetables from a mining area in Fujian Province, Southeast China. Chemosphere. 2013;93(6):1240–1246. doi: 10.1016/j.chemosphere.2013.06.085 23891580
15. Li F, Zhang J, Liu W, Liu J, Huang J, Zeng G. An exploration of an integrated stochastic-fuzzy pollution assessment for heavy metals in urban topsoil based on metal enrichment and bioaccessibility. Sci Total Enviro. 2018,644:649–660. doi: 10.1016/j.scitotenv.2018.06.366
16. Webster R, Burgess TM. Optimal interpolation and isarithmic mapping of soil properties IIIchanging drift and universal Kriging. Europ J Soil Sci. 1980;31(3):505–524. doi: 10.1111/j.1365-2389.1980.tb02085.x
17. Webster R, Oliver MA. Geostatistics for environmental scientists. New York: John Wiley & Sons. 2001.
18. Hu W, Shao M, Wan L, Si B. Spatial variability of soil electrical conductivity in a small watershed on the Loess Plateau of China. Geoderma. 2014;230-231(230):212–220. doi: 10.1016/j.geoderma.2014.04.014
19. Wang Y, Shao M, Gao L. Spatial variability of soil particle size distribution and fractal features in water-wind erosion crisscross region on the Loess Plateau of China. Soil Sci. 2010;175(12):579–585. doi: 10.1097/SS.0b013e3181fda413
20. Barik K, Aksakal EL, Islam KR, Sari S, Angin I. Spatial variability in soil compaction properties associated with field traffic operations. Catena. 2014;120(3):122–133. doi: 10.1016/j.catena.2014.04.013
21. Bai L, Chen Z, Chen Z. Soil Fertility Self-development Under Ecological Restoration in the Zhuxi Watershed in the Red Soil Hilly Region of China. J Mt Sci. 2014;11(5):1231–1241. doi: 10.1007/s11629-014-3056-7
22. Grinand C, Arrouays D, Laroche B, Martin MP. Extrapolating regional soil landscapes from an existing soil map: Sampling intensity, validation procedures, and integration of spatial context. Geoderma. 2008;143(1):180–190. doi: 10.1016/j.geoderma.2007.11.004
23. Chen Z, Chen Z, Bai L. Rare earth element migration in gullies with different Dicranopteris dichotoma, covers in the Huangnikeng gully group, Changting County, Southeast China. Chemosphere. 2016;164:443–450. doi: 10.1016/j.chemosphere.2016.08.123 27599011
24. Masuda A, Nakamura N, Tanaka T. Fine structures of mutually normalized rare-earth patterns of chondrites. Geochim Et Cosmochim Acta. 1973;37(2):239–248. doi: 10.1016/0016-7037(73)90131-2
25. Black K, Creamer RE, Xenakis G, Cook S. Improving forest soil carbon models using spatial data and geostatistical approaches. Geoderma. 2014;232-234(12):487–499. doi: 10.1016/j.geoderma.2014.05.022
26. Jang C, Chen S, Kuo Y. Applying indicator-based geostatistical approaches to determine potential zones of groundwater recharge based on borehole data. Catena. 2013;101(3):178–187. doi: 10.1016/j.catena.2012.09.003
27. Wang J, Yang R, Feng Y. Spatial variability of reconstructed soil properties and the optimization of sampling number for reclaimed land monitoring in an opencast coal mine. Arab J Geosci. 2017;10(2):46. doi: 10.1007/s12517-017-2836-0
28. Reimann RC, Filzmoser P, Garrett RG, Dutter R. Statistical Data Analysis Explained: Applied Environmental Statistics with R. Wiley. 2008.
29. Karanlik S, Aqca N, Yalcin M. Spatial distribution of heavy metals content in soils of Amik Plain (Hatay, Turkey). Environ Monit Assess.2011;173(1–4):181–191. doi: 10.1007/s10661-010-1380-0 20221796
30. Wang L, Liang T. Geochemical fractions of rare earth elements in soil around a mine tailing in Baotou, China. Sci Rep. 2015;5(5):12483. doi: 10.1038/srep12483 26198417
31. Baran A, Wieczorek J. Application of geochemical and ecotoxicity indices for assessment of heavy metals content in soils. Arch Environ Prot. 2015;41(2):54–63. doi: 10.1515/aep-2015-0019
32. Delavar MA, Safari Y. Spatial distribution of heavy metals in soils and plants in Zinc Town, northwest Iran. Int J Enviro Sci Technol. 2016;13(1):1–10. doi: 10.1007/s13762-015-0868-0
33. Wang L, Zhang S, Gao X, Liu S, Wang Y, Sun J, et al. Geochemical characteristics of Rare Earth Elements in different types of soils in China. J Rare Earths. 1998;(1):52–59.
34. Taylor SR, Mclennan SM. The geochemical evolution of the continental crust. Rev Geophy. 1995;33(2):241–265. doi: 10.1029/95RG00262
35. Diatloff E, Asher CJ, Smith FW. Concentrations of rare earth elements in some Australian soils. Aust J Soil Res. 1996;34(5):735–747. doi: 10.1071/SR9960735
36. Wang P, Zhao Z, Wang J, Zhang Z, Lu S. Spatial distribution of REE elements contents in arid area of southwest Hainan Island. J Arid Land Resour Environ. 2012;26(5):83–87.
37. Gao X, Zhang S, Wang L, Wang Y. REE and its relation with the mineral fraction in a typical geographic landscape in Ganxian, Southern Jiangxi. Geogr Res. 1999;18(3):241–246.
38. Compton JS, White RA, Smith M. Rare earth element behavior in soils and salt pan sediments of a semi-arid granitic terrain in the Western Cape, South Africa. Chem Geol. 2003;201(3):239–255. doi: 10.1016/S0009-2541(03)00239-0
39. Davranche M, Grybos M, Gruau G, Pedrot M, Dia A, Marsac R. Rare earth element patterns: A tool for identifying trace metal sources during wetland soil reduction. Chem Geol. 2011;284(1):127–137. doi: 10.1016/j.chemgeo.2011.02.014
40. Gao X, Shen Z, Wang L. Environmental chemistry of rare earth elements (REEs) in the cultivated soil of a typical REE mine in the southern Jiangxi. Soil Enviro Sci. 2001;10:11–13.
41. Tang N, Li J, Li Q. The distribution of rare earth elements sum and component of lateritic red soil and red soil in Fujian Province. Chin J Soil Sci. 1993;24(5):207–210.
42. Al-Omran AM, Aly AA, Al-Wabe M I, Al-Shayaa MS, Sallam AS, Nadeem M E. Geostatistical methods in evaluating spatial variability of groundwater quality in al-kharj region, saudi arabia. Appl Water Sci. 2017;7(7):4013–4023. doi: 10.1007/s13201-017-0552-2
43. Seyedmohammadi J, Esmaeelnejad L, Ramezanpour H. Geospatial modelling for optimum management of fertilizer application and environment protection. Model Earth Syst Environ, 2017;3(1),28. doi: 10.1007/s40808-017-0296-x
44. Cambardella CA, Moorman TB, Novak JM, Parkin TB, Karlen DL, Turco RF, et al. Field-scale variability of soil properties in central Iowa soils. Soil Sci Soc Am J. 1994;58(5):1501–1511. doi: 10.2136/sssaj1994.03615995005800050033x
45. Xie Y, Li X, Wang J, Christakos G, Hu M, An L, et al. Spatial estimation of antibiotic residues in surface soils in a typical intensive vegetable cultivation area in China. Sci Total Enviro. 2012;430(430):126–131. doi: 10.1016/j.scitotenv.2012.04.071
46. Fiket Ž, Medunić G, Kniewald G. Rare earth elements distribution in soil nearby thermal power plant. Enviro Earth Sci. 2015; 75(7): 1–9. doi: 10.1007/s12665-016-5410-2
47. Brito P, Prego R, Mil-homens M, Caçador I, Caetano M. Sources and distribution of yttrium and rare earth elements in surface sediments from Tagus estuary, Portugal. Sci Total Enviro. 2018; 621: 317–325. doi: 10.1016/j.scitotenv.2017.11.245
48. Li K, Liang T, Wang L, Yang Z. Contamination and health risk assessment of heavy metals in road dust in Bayan Obo Mining Region in Inner Mongolia, North China. J Geogr Sci. 2015; 25(12): 1439–1451. doi: 10.1007/s11442-015-1244-1
49. Utset A, Ruiz M, Herrera J, Leonc DPD. A geostatistical method for soil salinity sample site spacing. Geoderma. 1998; 86(1–2): 143–151. doi: 10.1016/S0016-7061(98)00037-8
50. Fu W, Tunney H, Zhang C. Spatial variation of soil nutrients in a dairy farm and its implications for site-specific fertilizer application. Soil Till Res, 2010;106(2):185–193. doi: 10.1016/j.still.2009.12.001
51. Lopez-Granados F, Jurado-Exposito M, Atenciano S, Garcia-Ferrer A, Orden MSDL, Garcia-Torres L. Spatial variability of agricultural soil parameters in southern Spain. Plant & Soil. 2002;246(1):97–105. doi: 10.1023/A:1021568415380
52. Aubert D, Probst A, Stille P. Distribution and origin of major and trace elements (particularly REE, U and Th) into labile and residual phases in an acid soil profile (Vosges Mountains, France). Appl Geochem. 2004;19(6):899–916. doi: 10.1016/j.apgeochem.2003.11.005
53. Migaszewski ZM, Gałuszka A, Dołe˛gowska S, Hałas S, Krzciuk K, Gebus B. Assessing the impact of Serwis mine tailings site on farmers’ wells using element and isotope signatures (Holy Cross Mountains, south-central Poland). Environ Earth Sci. 2015;74(1):629–647. doi: 10.1007/s12665-015-4067-6
54. Semhi K, Chaudhuri S, Clauer N. Fractionation of rare-earth elements in plants during experimental growth in varied clay substrates. Appl Geochem. 2009;24(3):447–453. doi: 10.1016/j.apgeochem.2008.12.029
55. Tyler G. Rare earth elements in soil and plant systems—A review. Plant & Soil. 2004;267(1/2):191–206. doi: 10.1007/s11104-005-4888-2
Článek vyšel v časopise
PLOS One
2019 Číslo 9
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Je libo čepici místo mozkového implantátu?
- Pomůže v budoucnu s triáží na pohotovostech umělá inteligence?
- AI může chirurgům poskytnout cenná data i zpětnou vazbu v reálném čase
- Nová metoda odlišení nádorové tkáně může zpřesnit resekci glioblastomů
Nejčtenější v tomto čísle
- Graviola (Annona muricata) attenuates behavioural alterations and testicular oxidative stress induced by streptozotocin in diabetic rats
- CH(II), a cerebroprotein hydrolysate, exhibits potential neuro-protective effect on Alzheimer’s disease
- Comparison between Aptima Assays (Hologic) and the Allplex STI Essential Assay (Seegene) for the diagnosis of Sexually transmitted infections
- Assessment of glucose-6-phosphate dehydrogenase activity using CareStart G6PD rapid diagnostic test and associated genetic variants in Plasmodium vivax malaria endemic setting in Mauritania
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy