#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Exposure to particle debris generated from passenger and truck tires induces different genotoxicity and inflammatory responses in the RAW 264.7 cell line


Autoři: Anna Poma aff001;  Giulia Vecchiotti aff001;  Sabrina Colafarina aff001;  Osvaldo Zarivi aff001;  Lorenzo Arrizza aff002;  Piero Di Carlo aff003;  Alessandra Di Cola aff005
Působiště autorů: Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy aff001;  Center for Microscopy, University of L'Aquila, L'Aquila, Italy aff002;  Department of Psychological, Health and Territorial Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy aff003;  Center of Excellence on Aging and Translational Medicine—Ce.S.I.—Me.T., University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy aff004;  Tun Abdul Razak Research Centre, Brickendonbury, Hertford, United Kingdom aff005
Vyšlo v časopise: PLoS ONE 14(9)
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pone.0222044

Souhrn

A number of studies have shown variable grades of cytotoxicity and genotoxicity in in vitro cell cultures, laboratory animals and humans when directly exposed to particle debris generated from tires. However, no study has compared the effects of particles generated from passenger tires with the effects of particles from truck tires. The aim of this study was to investigate and relate the cyto- and genotoxic effects of different types of particles (PP, passenger tire particles vs. TP, truck tire particles) in vitro using the phagocytic cell line RAW 264.7 (mouse leukaemic monocyte macrophage cell line). The viability of RAW 264.7 cells was determined by the 3- (4,5-dimethylthiazol-2-yl) -5- (3-carboxymethoxyphenyl) -2- (4-sulfophenyl) -2H-tetrazolium (MTS) assay following exposure for 4, 24 and 48 hours to different particle concentrations (10 μg / ml, 25 μg / ml, 50 μg / ml, 100 μg / ml). The effects of particles of passenger and truck tires on cell proliferation and genotoxicity were evaluated by means of the cytokinesis-block micronucleus (CBMN) assay following exposure for 24 hours to different particle concentrations (10 μg / ml, 25 μg / ml, 50 μg / ml, 100 μg / ml). In MTS assay, after 24 hours, it was found that PP induced a 30% decrease in metabolic activity at a concentration of 10 μg/ml, while TP caused reductions of 20% and 10% at concentrations of 10 μg/ml and 50 μg/ml, respectively. At 48 hours after the treatments, we observed increased metabolic activity at 50 μg/ml and 100 μg/ml for the PP while only at 50 μg/ml for the TP. The CBMN assay showed a significant increase in the number of micronuclei in the cells incubated with PP in all experimental conditions, while the cells treated with TP showed a meaningful increase only at 10 μg /ml. We utilized the TNF-α ELISA mouse test to detect the production of tumour necrosis factor-alpha (TNF-α) in RAW 264.7 cells. The effect of passenger and truck particles on TNF-α release was evaluated following exposure for 4 and 24 hours.

After 4 hours of incubation, the cells treated with PP and TP at 100 μg / ml showed a slight but significant increase in TNF-α release, while there was a significant increase in the release of TNF-α after 24 hours of incubation with both tire samples in the cells treated with 50 and 100 μg / ml PP. The data obtained show a higher cytotoxic, clastogenic/genotoxic and inflammatory effects of passenger compared to the truck tire particles.

Klíčová slova:

Physical sciences – Chemistry – Polymer chemistry – Macromolecules – Polymers – Elastomers – Rubber – Chemical elements – Zinc – Materials science – Materials – Biology and life sciences – Microbiology – Protozoology – Micronuclei – Physiology – Developmental biology – Molecular development – Research and analysis methods – Bioassays and physiological analysis – Biochemical analysis – Colorimetric assays – MTS assay – Enzyme assays – Biological cultures – Cell cultures – Medicine and health sciences – Immunology – Immune response – Inflammation – Immune system – Innate immune system – Cytokines – Diagnostic medicine – Signs and symptoms – Pathology and laboratory medicine – Immune physiology – Ecology and environmental sciences – Pollution – Air pollution


Zdroje

1. Chow J C, Watson J G, Mauderly J L, Costa D L, Wyzga R E, Vedal S, et al. Health effects of fine particulate air pollution: lines that connect. Journal of the air & waste management association. 2006; 56(10): 1368–1380.

2. Dockery D W, Pope C A, Xu X, Spengler J D, Ware J H, Fay M E, et al. An association between air pollution and mortality in six US cities. New England journal of medicine. 1993; 329(24), 1753–1759. doi: 10.1056/NEJM199312093292401 8179653

3. Zanobetti A, Schwartz J, Dockery D W. Airborne particles are a risk factor for hospital admissions for heart and lung disease. Environmental health perspectives. 2000; 108(11), 1071. doi: 10.1289/ehp.001081071 11102299

4. Vicente B, Rafael S, Rodrigues V, Relvas H, Vilaça M, Teixeira J et al. Influence of different complexity levels of road traffic models on air quality modelling at street scale. Air Quality, Atmosphere & Health. 2018; 1, 1217–1232. https://doi.org/10.1007/s11869-018-0621-1.

5. Bolognesi C, Moretto A. Genotoxic risk in rubber manufacturing industry: A systematic review. Toxicol Letters. 2014; 230, 345–355.

6. Musak L, Soucek P, Vodickova L, Naccarati A, Halasova E, Polakova V, et al. Chromosomal aberrations in tire plant workers and interaction with polymorphisms of biotransformation and DNA repair genes. Mutat Res. 2008; 641: 36–42. doi: 10.1016/j.mrfmmm.2008.02.007 18394656

7. Yamashita M, Yamanaka S. Dust Resulting from Tire Wear and the Risk of Health Hazards. Journal of Environmental Protection. 2013; 4: 509–515.

8. Veith A G. Tyre tread wear—the joint influence of compound properties and environmental factors. Tyre Science and Technology, TSTCA. 1995; 23(4): 212–237.

9. Gullivera J, Elliotta P, Henderson J, Hansella A L, Vienneaud D, Caia Y, et al. Local- and regional-scale air pollution modelling (PM10) and exposure assessment for pregnancy trimesters, infancy, and childhood to age 15 years: Avon Longitudinal Study of Parents And Children (ALSPAC). Environment International. 2018; 113 (April): 10–19.

10. National Toxicology Program scientists. NTP Toxicology and Carcinogenesis Studies of 2-Mercaptobenzothiazole (CAS No. 149-30-4) in F344/N Rats and B6C3F1 Mice (Gavage Studies). Natl Toxicol Program Tech Rep Ser. 1988; 332: 1–172. 12732904

11. Sorahan T. Cancer risks in chemical production workers exposed to 2-mercaptobenzothiazole. Occup Environ Med. 2009; 66 (4): 269–273. doi: 10.1136/oem.2008.041400 19158128

12. Avagyan R, Sadiktsis I, Bergvall C, Westerholm R. Tire tread wear particles in ambient air a previously unknown source of human exposure to the biocide 2-mercaptobenzothiazole, Environmental Science and Pollution Research. 2014; 21 (19): 11580–11586. doi: 10.1007/s11356-014-3131-1 25028318

13. Smolders E, Degryse F. Fate and effect of zinc from tire debris in soil. Environmental Science and Technology. 2002; 36, 3706–3710. doi: 10.1021/es025567p 12322741

14. Toraason M, Sussman G, Biagini R, Meade J, Beezhold D, Germolec D. Latex Allergy in the Workplace. Toxicological Sciences. 2000; 58, Issue 1, 5–14.

15. Gibaek K, Seokhwan L. Characteristics of Tire Wear Particles Generated by a Tire Simulator under Various Driving Conditions. Environ. Sci. Technol. 2018; 52, 12153−12161. doi: 10.1021/acs.est.8b03459 30277757

16. Dannis M L. Rubber Dust from the Normal Wear of Tires. Rubber Chemistry and Technology. 1974; 47, No. 4, 1011–1037.

17. Cardina J A. Particle Size Determination of Tire-Tread Rubber in Atmospheric Dusts. Rubber Chemistry and Technology. 1974; Vol. 47 (September), No. 4, 1005–1010.

18. Gustafsson M, Blomqvist G, Gudmundsson A, Dahl A, Swietlicki E, Bohgard M, et al. Properties and toxicological effects of particles from the interaction between tyres, road pavement and winter traction material. Science of the total environment, 2008; 393(2–3), 226–240. doi: 10.1016/j.scitotenv.2007.12.030 18258284

19. Lindbom J, Gustafsson M, Blomqvist G, Dahl A, Gudmundsson A, Swietlicki E,| et al. Exposure to Wear Particles Generated from Studded Tires and Pavement Induces Inflammatory Cytokine Release from Human Macrophages. Chem. Res. Toxicol. 2006;19, 521–530. doi: 10.1021/tx0503101 16608163

20. Kupiainen K, Tervahattu H, Raisanen M. Experimental studies about the impact of traction sand on urban road dust composition. Science of the Total Environment. 2003; 308: 175–184. doi: 10.1016/S0048-9697(02)00674-5 12738211

21. Kupiainen KJ, Tervahattu H, Size and composition of airborne particles from pavement wear, tires, and traction sanding. Environmental science & technology, 2005; 39(3): 699–706.

22. Rogge W F, Hildemann L M, Mazurek M A, Cass G R, Simoneit B R. Sources of fine organic aerosol. 3. Road dust, tire debris, and organometallic brake lining dust: roads as sources and sinks. Environmental Science & Technology, 1993; 27(9): 1892–1904.

23. Hildemann LM, Markowski GR, Cass GR. Chemical-composition of emissions from urban sources of fine organic aerosol. Environ Sci Technol. 1991; 25:744–59.

24. Adachi A, Tainosho Y. Characterization of heavy metal particles embedded in tire dust. Environment International. 2004; 30.8:1009–1017. doi: 10.1016/j.envint.2004.04.004 15337346

25. Smolders E, Degryse F. Fate and effect of zinc from tire debris in soil. Environ Sci Technol. 2002; 36: 3706–10. doi: 10.1021/es025567p 12322741

26. Blok J. Environmental exposure of road borders to zinc. Science of the Total Environment. 2005; 348(1–3): 173–190. doi: 10.1016/j.scitotenv.2004.12.073 16162323

27. Samplers A. Inc. Smyrna Georgia. Operating Manual for Andersen 1 ACFM Non-Viable Ambient Particle Sizing Samplers. Andersen Samplers.1985.

28. Cory A H. Use of an aqueous soluble tetrazolium/formazan assay for cell growth assays in culture. Cancer Commun. 1991; 3:207–12. 1867954

29. Fenech M. Cytokinesis-block micronucleus cytome assay. Nature protocols 2007; 2: 1084–1104. doi: 10.1038/nprot.2007.77 17546000

30. OECD Guidelines for the testing of chemicals, section 4: Health effects. Test No. 487: In Vitro Mammalian Cell Micronucleus Test. 2010;1–23.

31. Mosser D M, Edwards J P. Exploring the full spectrum of macrophage activation. Nature reviews immunology. 2008; 8: 958–969. doi: 10.1038/nri2448 19029990

32. Jalava P I, Salonen R O, Pennanen A S, Sillanpaa M, Halinen A I, Happo M S, et al. Heterogeneities in inflammatory and cytotoxic responses of Raw 264.7 macrophage cell line to urban air coarse, fine, and ultrafine particles from six European campaigns. Inhalation toxicology. 2007; 19:3: 213–225. doi: 10.1080/08958370601067863 17365026

33. Janssen N A H, Hoek G, Simic-Lawson M, Fischer P, van Bree L, ten Brink H, et al. Black Carbon as an Additional Indicator of the Adverse Health Effects of Airborne Particles Compared with PM10 and PM2.5. Environmental Health Perspectives. 2011; 119 (12): 1691–1699. doi: 10.1289/ehp.1003369 21810552

34. Air Quality Expert Group. What is causing the health effects of particles? In: Pilling M, ed. Particulate matter in the United Kindom. London: Department for the Environment, Food and Rural Affairs, 2005:29–39. http://www.defra.gov.uk/environment/airquality/aqeg/particulatematter/index.htm.)


Článek vyšel v časopise

PLOS One


2019 Číslo 9
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

Současné pohledy na riziko v parodontologii
nový kurz
Autoři: MUDr. Ladislav Korábek, CSc., MBA

Svět praktické medicíny 3/2024 (znalostní test z časopisu)

Kardiologické projevy hypereozinofilií
Autoři: prof. MUDr. Petr Němec, Ph.D.

Střevní příprava před kolonoskopií
Autoři: MUDr. Klára Kmochová, Ph.D.

Aktuální možnosti diagnostiky a léčby litiáz
Autoři: MUDr. Tomáš Ürge, PhD.

Všechny kurzy
Kurzy Podcasty Doporučená témata Časopisy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#