Understanding the variability of Australian fire weather between 1973 and 2017
Autoři:
Sarah Harris aff001; Chris Lucas aff003
Působiště autorů:
Bushfire Management, Country Fire Authority, Burwood East, Victoria, Australia
aff001; School of Earth, Atmosphere and Environment, Monash University, Clayton, Victoria, Australia
aff002; Science to Services, Bureau of Meteorology, Melbourne, Victoria, Australia
aff003
Vyšlo v časopise:
PLoS ONE 14(9)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0222328
Souhrn
Australian fire weather shows spatiotemporal variability on interannual and multi-decadal time scales. We investigate the climate factors that drive this variability using 39 station-based historical time series of the seasonal 90th-percentile of the McArthur Forest Fire Danger Index (FFDI) extending from 1973 through 2017. Using correlation analyses, we examine the relationship of these time series to the El Niño Southern Oscillation (ENSO), the Southern Annular Mode (SAM) and the Indian Ocean Dipole (IOD), considering both concurrent and time-lagged relationships. Additionally, longer term behaviour of the time series using linear trend analysis is discussed in the context of the climate drivers, Interdecadal Pacific Oscillation (IPO) and anthropogenic climate change. The results show that ENSO is the main driver for interannual variability of fire weather, as defined by FFDI in this study, for most of Australia. In general, El Niño-like conditions lead to more extreme fire weather, with this effect stronger in eastern Australia. However, there are significant regional variations to this general rule. In NSW, particularly along the central coast, negative SAM is a primary influence for elevated fire weather in late-winter and spring. In the southeast (VIC and TAS), the El Niño-like impact is exacerbated when positive IOD conditions are simultaneously observed. The spring conditions are key, and strongly influence what is observed during the following summer. On longer time scales (45 years), linear trends are upward at most stations; this trend is strongest in the southeast and during the spring. The positive trends are not driven by the trends in the climate drivers and they are not consistent with hypothesized impacts of the IPO, either before or after its late-1990s shift to the cold phase. We propose that anthropogenic climate change is the primary driver of the trend, through both higher mean temperatures and potentially through associated shifts in large-scale rainfall patterns. Variations from interannual factors are generally larger in magnitude than the trend effects observed to date.
Klíčová slova:
Earth sciences – Seasons – Spring – Atmospheric science – Climatology – El Niño-Southern Oscillation – Meteorology – Weather – Rain – Marine and aquatic sciences – Oceanography – People and places – Geographical locations – Oceania – Australia – Ecology and environmental sciences – Wildfires – Engineering and technology – Energy and power – Physical sciences – Materials science – Materials – Fuels
Zdroje
1. Bradstock RA. A biogeographic model of fire regimes in Australia: Current and future implications. Glob Ecol Biogeogr. 2010;19: 145–158. doi: 10.1111/j.1466-8238.2009.00512.x
2. Hennessy K, Lucas C, Nicholls N, Bathols J, Suppiah R, Ricketts J. Climate change impacts on fire-weather in south-east Australia. CSIRO Mar Atmos Res. 2005; 91.
3. Dowdy AJ. Climatological variability of fire weather in Australia. J Appl Meteorol Climatol. 2018;57: 221–234. doi: 10.1175/JAMC-D-17-0167.1
4. Clarke H, Lucas C, Smith P. Changes in Australian fire weather between 1973 and 2010. Int J Climatol. 2013;33: 931–944. doi: 10.1002/joc.3480
5. Luke RH, McArthur AG. Bushfires in Australia. 1st ed. Bushfires in Australia. Canberra, ACT: Australian Government Publishing Service for CSIRO.; 1978.
6. Blanchi R, Lucas C, Leonard J, Finkele K. Meteorological conditions and wildfire-related houseloss in Australia. Int J Wildl Fire. 2010;19: 914. doi: 10.1071/wf08175
7. Blanchi R, Leonard J, Haynes K, Opie K, James M, Oliveira FD de. Environmental circumstances surrounding bushfire fatalities in Australia 1901–2011. Environ Sci Policy. 2014;37: 192–203. doi: 10.1016/j.envsci.2013.09.013
8. Hendon HH, Thompson DWJ, Wheeler MC. Australian rainfall and surface temperature variations associated with the Southern Hemisphere annular mode. J Clim. 2007;20: 2452–2467. doi: 10.1175/JCLI4134.1
9. Risbey JS, Pook MJ, McIntosh PC, Wheeler MC, Hendon HH. On the Remote Drivers of Rainfall Variability in Australia. Mon Weather Rev. 2009;137: 3233–3253. doi: 10.1175/2009MWR2861.1
10. McPhaden MJ, Zebiak SE, Glantz MH. ENSO as an Integrating Concept in Earth Science. Science (80-). 2006;314: 1740–1745. Available: http://www.sciencemag.org/cgi/content/abstract/314/5806/1740 doi: 10.1126/science.1132588 17170296
11. Wang C, Deser C, Yu J-Y, DiNezio P, Clement A. El Niño and Southern Oscillation (ENSO): A Review. In: Glynn PW, Manzello DP, Enochs IC, editors. Coral Reefs of the Eastern Tropical Pacific. Dordrecht: Springer Netherlands; 2017. pp. 85–106. doi: 10.1007/978-94-017-7499-4_4
12. Saji NH, Goswami BN, Vinayachandran PN, Yamagata T. A dipole mode in the tropical Indian ocean. Nature. 1999;401: 360–363. doi: 10.1038/43854 16862108
13. Thompson DWJ, Wallace JM. Annular modes in the extratropical circulation. Part II: Trends. J Clim. 2000;13: 1018–1036. doi: 10.1175/1520-0442(2000)013<1018:AMITEC>2.0.CO;2
14. Love G, Downey A. The prediction of bushfires in central Australia. Aust Meteorol Mag. 1986;34: 93–101.
15. Verdon DC, Kiem AS, Franks SW. Multi-decadal variability of forest fire risk—Eastern Australia. Int J Wildl Fire. 2004;13: 165–171. doi: 10.1071/WF03034
16. Williams AAJ, Karoly DJ, Tapper N. The sensitivity of Australian fire danger to climate change. Clim Change. 2001; doi: 10.1023/A:1010706116176
17. Lucas C, Hennessy K, Mills G, Bathols J. Bushfire Weather in Southeast Australia: Recent Trends and Projected Climate Change Impacts [Internet]. Consultancy report prepared for the Climate Institute of Australia by the Bushfire CRC and Australian Bureau of Meteorology. 2007. doi: 10.1109/CSIT.2013.6588776
18. Harris S, Tapper N, Packham D, Orlove B, Nicholls N. The relationship between the monsoonal summer rain and dry-season fire activity of northern Australia. Int J Wildl Fire. 2008;17: 674. doi: 10.1071/wf06160
19. Nicholls N, Lucas C. Interannual variations of area burnt in Tasmanian bushfires: Relationships with climate and predictability. Int J Wildl Fire. 2007;16: 540–546. doi: 10.1071/WF06125
20. Felderhof L, Gillieson D. Comparison of fire patterns and fire frequency in two tropical savanna bioregions. Austral Ecol. 2006;31: 736–746. doi: 10.1111/j.1442-9993.2006.01645.x
21. Harris S, Nicholls N, Tapper N. Forecasting fire activity in Victoria, Australia, using antecedent climate variables and ENSO indices. Int J Wildl Fire. 2014;23: 173. doi: 10.1071/WF13024
22. Mariani M, Fletcher MS, Holz A, Nyman P. ENSO controls interannual fire activity in southeast Australia. Geophys Res Lett. 2016;43: 10,891–10,900. doi: 10.1002/2016GL070572
23. Cai W, Cowan T, Raupach M. Positive Indian Ocean Dipole events precondition southeast Australia bushfires. Geophys Res Lett. 2009;36: 1–6. doi: 10.1029/2009GL039902
24. Williamson GJ, Prior LD, Jolly WM, Cochrane MA, Murphy BP, Bowman DMJS. Measurement of inter- and intra-annual variability of landscape fire activity at a continental scale: The Australian case. Environ Res Lett. 2016;11. doi: 10.1088/1748-9326/11/3/035003
25. Mariani M, Fletcher MS. The Southern Annular Mode determines interannual and centennial-scale fire activity in temperate southwest Tasmania, Australia. Geophys Res Lett. 2016;43: 1702–1709. doi: 10.1002/2016GL068082
26. BoM CSIRO. State of the Climate 2018. In: State of the Climate 2018 [Internet]. 2018 [cited 18 Dec 2018] p. 24. Available: http://www.bom.gov.au/state-of-the-climate/
27. Power S, Casey T, Folland C, Colman A, Mehta V. Inter-decadal modulation of the impact of ENSO on Australia. Clim Dyn. 1999;15: 319–324. doi: 10.1007/s003820050284
28. Lucas C. On developing a historical fire weather data-set for Australia. Aust Meteorol Oceanogr J. 2010;60: 1–14.
29. Noble IR, Gill AM, Bary GAV. McArthur’s fire‐danger meters expressed as equations. Aust J Ecol. 1980;5: 201–203. doi: 10.1111/j.1442-9993.1980.tb01243.x
30. Griffiths D. Improved Formula for the Drought Factor in McArthur’s Forest Fire Danger Meter. Aust For. 1999;62: 202–206. doi: 10.1080/00049158.1999.10674783
31. Keetch JJ, Byram GM. A Drought Index for Forest Fire Control. Res Pap SE-38 Asheville, NC US Dep Agric For Serv Southeast For Exp Station 35 p. 1968;038. Available: https://www.srs.fs.fed.us/pubs/40
32. Sullivan A, McCaw L, Gomes Da Cruz M, Matthews S, Ellis P. Fuel, Fire Weather and Fire Behaviour in Australian Ecosystems. Flammable Australia: fire regimes, biodiversity and ecosystems in a changing world. 2012. doi: 10.2989/10220119.2012.715728
33. Williams RJ, Bradstock RA, Cary GJ, Enright NJ, Gilll M. A, Leidloff AC, et al. Interactions between climate change, fire regimes and biodiversity in Australia—a preliminary assessment. Report to the Department of Climate Change and Department of the Environment, Heritage and Arts, Canberra, Australia. 2009. http://dx.doi.org/10.3109/00952990.2012.668597
34. Huang B, Thorne PW, Banzon VF, Boyer T, Chepurin G, Lawrimore JH, et al. Extended reconstructed Sea surface temperature, Version 5 (ERSSTv5): Upgrades, validations, and intercomparisons. J Clim. 2017; doi: 10.1175/JCLI-D-16-0836.1
35. Rayner NA, Parker DE, Horton EB, Folland CK, Alexander L V., Rowell DP, et al. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res. 2003;108: 4407. doi: 10.1029/2002JD002670
36. Marshall GJ. Trends in the Southern Annular Mode from observations and reanalyses. J Clim. 2003;16: 4134–4143. doi: 10.1175/1520-0442(2003)016<4134:TITSAM>2.0.CO;2
37. Santer BD, Wigley TML, Boyle JS, Gaffen DJ, Hnilo JJ, Nychka D, et al. Statistical significance of trends and trend differences in layer-average atmospheric temperature time series. J Geophys Res. 2000;105: 7337–7356. doi: 10.1029/1999JD901105
38. Stuecker MF, Timmermann A, Jin FF, Chikamoto Y, Zhang W, Wittenberg AT, et al. Revisiting ENSO/Indian Ocean Dipole phase relationships. Geophys Res Lett. 2017;44: 2481–2492. doi: 10.1002/2016GL072308
39. Gong T, Feldstein SB, Luo D. The Impact of ENSO on Wave Breaking and Southern Annular Mode Events. J Atmos Sci. 2010;67: 2854–2870. doi: 10.1175/2010JAS3311.1
40. Kim B-M, Choi H, Kim S-J, Choi W. Amplitude-dependent relationship between the Southern Annular Mode and the El Niño Southern Oscillation in austral summer. Asia-Pacific J Atmos Sci. 2017;53: 85–100. doi: 10.1007/s13143-017-0007-6
41. Lim EP, Hendon HH. Understanding and predicting the strong Southern Annular Mode and its impact on the record wet east Australian spring 2010. Clim Dyn. 2015;44: 2807–2824. doi: 10.1007/s00382-014-2400-5
42. Hope P, Timbal B, Hendon HH, Ekström M, Potter N. A synthesis of findings Victorian Climate Initiative. 2017.
43. BoM. Indian Ocean influences on the Australian climate. In: Bureau Web Page [Internet]. 2019 [cited 10 Jul 2019]. Available: http://www.bom.gov.au/climate/iod/
44. BoM. La Nina—Detailed Australian Analysis. In: Bureau Web Page [Internet]. 2019 [cited 18 Jan 2019]. Available: http://www.bom.gov.au/climate/enso/lnlist/index.shtml
45. BoM. El Nino—Detailed Australian Analysis. In: Bureau Web Page [Internet]. 2019 [cited 18 Jan 2019]. Available: http://www.bom.gov.au/climate/enso/enlist/
46. Cai W, Borlace S, Lengaigne M, Van Rensch P, Collins M, Vecchi G, et al. Increasing frequency of extreme El Niño events due to greenhouse warming. Nat Clim Chang. 2014;4: 111–116. doi: 10.1038/nclimate2100
47. Cai W, Santoso A, Wang G, Weller E, Wu L, Ashok K, et al. Increased frequency of extreme Indian ocean dipole events due to greenhouse warming. Nature. 2014;510: 254–258. doi: 10.1038/nature13327 24919920
48. Hoerling MP, Kumar A, Zhong M. El Niño, La Niña, and the nonlinearity of their teleconnections. J Clim. 1997;10: 1769–1786. doi: 10.1175/1520-0442(1997)010<1769:ENOLNA>2.0.CO;2
49. Chung CTY, Power SB, Arblaster JM, Rashid HA, Roff GL. Nonlinear precipitation response to El Niño and global warming in the Indo-Pacific. Clim Dyn. 2014;42: 1837–1856. doi: 10.1007/s00382-013-1892-8
50. Power SB, Haylock M, Colman R, Wang X. The predictability of interdecadal changes in ENSO activity and ENSO teleconnections. J Clim. 2006;19: 4755–4771. doi: 10.1175/JCLI3868.1
51. Dowdy AJ, Field RD, Spessa AC. Seasonal forecasting of fire weather based on a new global fire weather database. Proceedings for the 5th International Fire Behaviour and Fuels Conference. 2017.
52. Pui A, Sharma A, Santoso A, Westra S. Impact of the El Niño–Southern Oscillation, Indian Ocean Dipole, and Southern Annular Mode on Daily to Subdaily Rainfall Characteristics in East Australia. Mon Weather Rev. 2012;140: 1665–1682. doi: 10.1175/MWR-D-11-00238.1
53. Betts AK, Desjardins R, Worth D, Beckage B. Climate coupling between temperature, humidity, precipitation, and cloud cover over the Canadian Prairies. J Geophys Res Atmos. 2014;119: 13,305–13,326. doi: 10.1002/2014JD022511
54. Lucas C. A high-quality historical humidity database for Australia [Internet]. CAWCR Technical Report No. 024. 2010. Available: http://www.cawcr.gov.au/technical-reports/CTR_024.pdf
55. Yang Y, Xie SP, Wu L, Kosaka Y, Lau NC, Vecchi GA. Seasonality and predictability of the Indian Ocean dipole mode: ENSO forcing and internal variability. J Clim. 2015;28: 8021–8036. doi: 10.1175/JCLI-D-15-0078.1
56. Thompson DWJ, Wallace JM. Annular Modes in the Extratropical Circulation. Part I: Month-to-Month Variability*. J Clim. 2000;13: 1000–1016. doi: 10.1175/1520-0442(2000)013<1000:AMITEC>2.0.CO;2
57. Fox-Hughes P, Harris R, Lee G, Grose M, Bindoff N. Future fire danger climatology for Tasmania, Australia, using a dynamically downscaled regional climate model. Int J Wildl Fire. 2014;23: 309–321. doi: 10.1071/WF13126
58. Evans S, Marchand R, Ackerman T. Variability of the Australian Monsoon and precipitation trends at Darwin. J Clim. 2014;27: 8487–8500. doi: 10.1175/JCLI-D-13-00422.1
59. Wheeler MC, Hendon HH, Cleland S, Meinke H, Donald A. Impacts of the Madden-Julian oscillation on australian rainfall and circulation. J Clim. 2009; doi: 10.1175/2008JCLI2595.1
60. World Meteorological Organization. WMO statement on the status of the global climate in 2015 [Internet]. World Meteorological Organization. 2016. Available: http://www.wmo.int/pages/mediacentre/press_releases/documents/WMO_1108_EN_web_000.pdf
61. Mantua NJ, Hare SR. The Pacific Decadal Oscillation. J Oceanogr. 2002; doi: 10.1023/A:1015820616384
62. Lim EP, Hendon HH, Zhao M, Yin Y. Inter-decadal variations in the linkages between ENSO, the IOD and south-eastern Australian springtime rainfall in the past 30 years. Clim Dyn. 2017;49: 97–112. doi: 10.1007/s00382-016-3328-8
63. Lin R, Zheng F, Dong X. ENSO Frequency Asymmetry and the Pacific Decadal Oscillation in Observations and 19 CMIP5 Models. Adv Atmos Sci. 2018;35: 495–506. doi: 10.1007/s00376-017-7133-z
64. Dai A, Fyfe JC, Xie SP, Dai X. Decadal modulation of global surface temperature by internal climate variability. Nat Clim Chang. 2015;5: 555–559. doi: 10.1038/nclimate2605
65. Meehl GA, Hu A, Santer BD, Xie SP. Contribution of the Interdecadal Pacific Oscillation to twentieth-century global surface temperature trends. Nat Clim Chang. 2016;6: 1005–1008. doi: 10.1038/nclimate3107
66. Palmer JG, Cook ER, Turney CSM, Allen K, Fenwick P, Cook BI. Drought variability in the eastern Australia and New Zealand summer drought atlas (ANZDA, CE 1500–2012) modulated by the Interdecadal Paci fi c Oscillation. Environ Res Lett. 2015;10: 124002. doi: 10.1088/1748-9326/10/12/124002
67. Henley BJ, Gergis J, Karoly DJ, Power S, Kennedy J, Folland CK. A Tripole Index for the Interdecadal Pacific Oscillation. Clim Dyn. 2015;45: 3077–3090. doi: 10.1007/s00382-015-2525-1
68. CSIRO and Bureau of Meteorology. Climate Change in Australia Information for Australia’s Natural Resource Management Regions: Technical Report. 2015.
69. Lucas C, Timbal B, Nguyen H. The expanding tropics: A critical assessment of the observational and modeling studies. Wiley Interdiscip Rev Clim Chang. 2014;5: 89–112. doi: 10.1002/wcc.251
70. Nguyen H, Lucas C, Evans A, Timbal B, Hanson L. Expansion of the Southern Hemisphere Hadley Cell in Response to Greenhouse Gas Forcing. J Clim. 2015;28: 8067–8077. doi: 10.1175/JCLI-D-15-0139.1
71. Lucas C, Nguyen H, Timbal B. An observational analysis of Southern Hemisphere tropical expansion. J Geophys Res Atmos. 2012;117: 1–18. doi: 10.1029/2011JD017033
72. Lucas C, Nguyen H. Regional characteristics of tropical expansion and the role of climate variability. J Geophys Res Atmos. 2015;120: 6809–6824. doi: 10.1002/2015JD023130
73. Nguyen H, Hendon HH, Lim EP, Boschat G, Maloney E, Timbal B. Variability of the extent of the Hadley circulation in the southern hemisphere: a regional perspective. Clim Dyn. 2017;0: 1–14. doi: 10.1007/s00382-017-3592-2
74. Clarke HG, Smith PL, Pitman AJ. Regional signatures of future fire weather over eastern Australia from global climate models. Int J Wildl Fire. 2011;20: 550–562. doi: 10.1071/WF10070
75. Black MT. An attribution study of southeast Australian wildfire risk. The University of Melbourne. 2016.
76. Hope P, Black MT, Lim EP, Dowdy A, Wang G, Pepler AS, et al. On determining the impact of increasing atmospheric CO 2 on the record fire weather in eastern Australia in February 2017. Bull Am Meteorol Soc. 2019;100: S111–S117. doi: 10.1175/BAMS-D-18-0135.1
77. Arblaster JM, Meehl GA. Contributions of external forcings to southern annular mode trends. J Clim. 2006; doi: 10.1175/JCLI3774.1
78. Mariani M, Holz A, Veblen TT, Williamson G, Fletcher MS, Bowman DMJS. Climate Change Amplifications of Climate-Fire Teleconnections in the Southern Hemisphere. Geophys Res Lett. 2018;45: 5071–5081. doi: 10.1029/2018GL078294
Článek vyšel v časopise
PLOS One
2019 Číslo 9
- Tisícileté topoly, mokří psi, stárnoucí kočky a ospalé octomilky – „jednohubky“ z výzkumu 2024/41
- Jaké jsou aktuální trendy v léčbě karcinomu slinivky?
- Může hubnutí souviset s vyšším rizikem nádorových onemocnění?
- Menstruační krev má značný diagnostický potenciál, mimo jiné u diabetu
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
Nejčtenější v tomto čísle
- Graviola (Annona muricata) attenuates behavioural alterations and testicular oxidative stress induced by streptozotocin in diabetic rats
- CH(II), a cerebroprotein hydrolysate, exhibits potential neuro-protective effect on Alzheimer’s disease
- Comparison between Aptima Assays (Hologic) and the Allplex STI Essential Assay (Seegene) for the diagnosis of Sexually transmitted infections
- Assessment of glucose-6-phosphate dehydrogenase activity using CareStart G6PD rapid diagnostic test and associated genetic variants in Plasmodium vivax malaria endemic setting in Mauritania
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy