Roles of differential expression of miR-543-5p in GH regulation in rat anterior pituitary cells and GH3 cells
Autoři:
Ze-Wen Yu aff001; Wei Gao aff001; Xin-Yao Feng aff001; Jin-Yu Zhang aff001; Hai-Xiang Guo aff001; Chang-Jiang Wang aff001; Jian Chen aff001; Jin-Ping Hu aff001; Wen-Zhi Ren aff001; Bao Yuan aff001
Působiště autorů:
Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, P.R. China
aff001
Vyšlo v časopise:
PLoS ONE 14(9)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0222340
Souhrn
Growth hormone (GH) is an important hormone released by the pituitary gland that plays a key role in the growth and development of organisms. In our study, TargetScan analysis and the dual luciferase reporter assays were used to predict and screen for miRNAs that might act on the rat Gh1 gene, and we identified miR-543-5p. Then, the GH3 cell line and the primary rat pituitary cells were transfected with miRNA mimic, inhibitor, and siRNA. We detected the Gh1 gene expression and the GH secretion by real-time PCR and ELISAs, respectively, to verify the regulatory effect of miR-543-5p on GH secretion. The results showed that miR-543-5p can inhibit Gh1 mRNA expression and reduce GH secretion. MiR-543-5p inhibitor upregulated Gh1 mRNA expression and increased GH secretion compared with the negative control. In summary, miR-543-5p downregulates Gh1 expression, resulting in a decrease in GH synthesis and secretion, which demonstrates the important role of miRNAs in regulating GH and animal growth and development.
Klíčová slova:
Biology and life sciences – Anatomy – Endocrine system – Pituitary gland – Nervous system – Neuroscience – Biochemistry – Nucleic acids – RNA – Non-coding RNA – Natural antisense transcripts – MicroRNAs – Hormones – Peptide hormones – Growth hormone – Genetics – Gene expression – Gene regulation – Molecular biology – Molecular biology techniques – Transfection – DNA construction – Plasmid construction – Physiology – Physiological processes – Secretion – Cell biology – Cell processes – Cell death – Apoptosis – Medicine and health sciences – Neuroanatomy – Research and analysis methods
Zdroje
1. Salomon F, Cuneo RC, Hesp R, Sonksen PH. The effects of treatment with recombinant human growth hormone on body composition and metabolism in adults with growth hormone deficiency. The New England journal of medicine. 1989;321(26):1797–803. doi: 10.1056/NEJM198912283212605 2687691.
2. Isaksson OG, Lindahl A, Nilsson A, Isgaard J. Mechanism of the stimulatory effect of growth hormone on longitudinal bone growth. Endocrine reviews. 1987;8(4):426–38. doi: 10.1210/edrv-8-4-426 3319530.
3. Binnerts A, Swart GR, Wilson JH, Hoogerbrugge N, Pols HA, Birkenhager JC, et al. The effect of growth hormone administration in growth hormone deficient adults on bone, protein, carbohydrate and lipid homeostasis, as well as on body composition. Clinical endocrinology. 1992;37(1):79–87. doi: 10.1111/j.1365-2265.1992.tb02287.x 1424196.
4. Locatelli V, Bianchi VE. Effect of GH/IGF-1 on Bone Metabolism and Osteoporsosis. International journal of endocrinology. 2014;2014:235060. doi: 10.1155/2014/235060 25147565
5. Bergan-Roller HE, Sheridan MA. The growth hormone signaling system: Insights into coordinating the anabolic and catabolic actions of growth hormone. General and comparative endocrinology. 2018;258:119–33. doi: 10.1016/j.ygcen.2017.07.028 28760716.
6. Isaksson OG, Jansson JO, Gause IA. Growth hormone stimulates longitudinal bone growth directly. Science. 1982;216(4551):1237–9. doi: 10.1126/science.7079756 7079756.
7. Berryman DE, Christiansen JS, Johannsson G, Thorner MO, Kopchick JJ. Role of the GH/IGF-1 axis in lifespan and healthspan: lessons from animal models. Growth hormone & IGF research: official journal of the Growth Hormone Research Society and the International IGF Research Society. 2008;18(6):455–71. doi: 10.1016/j.ghir.2008.05.005 18710818
8. Pollak M. The insulin and insulin-like growth factor receptor family in neoplasia: an update. Nature reviews Cancer. 2012;12(3):159–69. doi: 10.1038/nrc3215 22337149.
9. Tatar M, Bartke A, Antebi A. The endocrine regulation of aging by insulin-like signals. Science. 2003;299(5611):1346–51. doi: 10.1126/science.1081447 12610294.
10. Alzhanov D, Mukherjee A, Rotwein P. Identifying growth hormone-regulated enhancers in the Igf1 locus. Physiological genomics. 2015;47(11):559–68. doi: 10.1152/physiolgenomics.00062.2015 26330488
11. Roberts CT Jr., Brown AL, Graham DE, Seelig S, Berry S, Gabbay KH, et al. Growth hormone regulates the abundance of insulin-like growth factor I RNA in adult rat liver. The Journal of biological chemistry. 1986;261(22):10025–8. 3755433.
12. Domene H, Krishnamurthi K, Eshet R, Gilad I, Laron Z, Koch I, et al. Growth hormone (GH) stimulates insulin-like growth factor-I (IGF-I) and IGF-I-binding protein-3, but not GH receptor gene expression in livers of juvenile rats. Endocrinology. 1993;133(2):675–82. doi: 10.1210/endo.133.2.7688291 7688291.
13. Bichell DP, Kikuchi K, Rotwein P. Growth hormone rapidly activates insulin-like growth factor I gene transcription in vivo. Molecular endocrinology. 1992;6(11):1899–908. doi: 10.1210/mend.6.11.1480177 1480177.
14. Zhang H, Qi Q, Chen T, Luo J, Xi Q, Jiang Q, et al. Age-Related Changes in MicroRNA in the Rat Pituitary and Potential Role in GH Regulation. International journal of molecular sciences. 2018;19(7). doi: 10.3390/ijms19072058 30011963
15. Ashpole NM, Sanders JE, Hodges EL, Yan H, Sonntag WE. Growth hormone, insulin-like growth factor-1 and the aging brain. Experimental gerontology. 2015;68:76–81. doi: 10.1016/j.exger.2014.10.002 25300732
16. Carthew RW, Sontheimer EJ. Origins and Mechanisms of miRNAs and siRNAs. Cell. 2009;136(4):642–55. doi: 10.1016/j.cell.2009.01.035 19239886
17. He L, Hannon GJ. MicroRNAs: small RNAs with a big role in gene regulation. Nature reviews Genetics. 2004;5(7):522–31. doi: 10.1038/nrg1379 15211354.
18. Hawkins PG, Morris KV. RNA and transcriptional modulation of gene expression. Cell cycle. 2008;7(5):602–7. doi: 10.4161/cc.7.5.5522 18256543
19. Kitahara Y, Nakamura K, Kogure K, Minegishi T. Role of microRNA-136-3p on the expression of luteinizing hormone-human chorionic gonadotropin receptor mRNA in rat ovaries. Biology of reproduction. 2013;89(5):114. doi: 10.1095/biolreprod.113.109207 24025743.
20. Ahmed K, LaPierre MP, Gasser E, Denzler R, Yang Y, Rulicke T, et al. Loss of microRNA-7a2 induces hypogonadotropic hypogonadism and infertility. The Journal of clinical investigation. 2017;127(3):1061–74. doi: 10.1172/JCI90031 28218624
21. Rizzoti K. Genetic regulation of murine pituitary development. Journal of molecular endocrinology. 2015;54(2):R55–73. doi: 10.1530/JME-14-0237 25587054
22. Hong GK, Payne SC, Jane JA Jr. Anatomy, Physiology, and Laboratory Evaluation of the Pituitary Gland. Otolaryngologic clinics of North America. 2016;49(1):21–32. doi: 10.1016/j.otc.2015.09.002 26614827.
23. Han DX, Sun XL, Xu MQ, Chen CZ, Jiang H, Gao Y, et al. Roles of differential expression of microRNA-21-3p and microRNA-433 in FSH regulation in rat anterior pituitary cells. Oncotarget. 2017;8(22):36553–65. doi: 10.18632/oncotarget.16615 28402262
24. Shi Z, Luo G, Fu L, Fang Z, Wang X, Li X. miR-9 and miR-140-5p target FoxP2 and are regulated as a function of the social context of singing behavior in zebra finches. The Journal of neuroscience: the official journal of the Society for Neuroscience. 2013;33(42):16510–21. doi: 10.1523/JNEUROSCI.0838-13.2013 24133256
25. Ji ML, Zhang XJ, Shi PL, Lu J, Wang SZ, Chang Q, et al. Downregulation of microRNA-193a-3p is involved in invertebral disc degeneration by targeting MMP14. Journal of molecular medicine. 2016;94(4):457–68. doi: 10.1007/s00109-015-1371-2 26620678.
26. Foshay KM, Gallicano GI. Small RNAs, big potential: the role of MicroRNAs in stem cell function. Current stem cell research & therapy. 2007;2(4):264–71. 18220910.
27. Taganov KD, Boldin MP, Baltimore D. MicroRNAs and immunity: tiny players in a big field. Immunity. 2007;26(2):133–7. doi: 10.1016/j.immuni.2007.02.005 17307699.
28. Wilfred BR, Wang WX, Nelson PT. Energizing miRNA research: a review of the role of miRNAs in lipid metabolism, with a prediction that miR-103/107 regulates human metabolic pathways. Molecular genetics and metabolism. 2007;91(3):209–17. doi: 10.1016/j.ymgme.2007.03.011 17521938
29. Blakaj A, Lin H. Piecing together the mosaic of early mammalian development through microRNAs. The Journal of biological chemistry. 2008;283(15):9505–8. doi: 10.1074/jbc.R800002200 18272516
30. Wienholds E, Kloosterman WP, Miska E, Alvarez-Saavedra E, Berezikov E, de Bruijn E, et al. MicroRNA expression in zebrafish embryonic development. Science. 2005;309(5732):310–1. doi: 10.1126/science.1114519 15919954.
31. Zhang T, Yang Z, Gao H. Advancements in the study of miRNA regulation during the cell cycle in human pituitary adenomas. Journal of neuro-oncology. 2017;134(2):253–8. doi: 10.1007/s11060-017-2518-5 28577032
32. He W, Huang L, Li M, Yang Y, Chen Z, Shen X. MiR-148b, MiR-152/ALCAM Axis Regulates the Proliferation and Invasion of Pituitary Adenomas Cells. Cellular physiology and biochemistry: international journal of experimental cellular physiology, biochemistry, and pharmacology. 2017;44(2):792–803. doi: 10.1159/000485342 29176323.
33. Cui M, Zhang M, Liu HF, Wang JP. Effects of microRNA-21 targeting PITX2 on proliferation and apoptosis of pituitary tumor cells. European review for medical and pharmacological sciences. 2017;21(13):2995–3004. 28742208.
34. Ye RS, Li M, Qi QE, Cheng X, Chen T, Li CY, et al. Comparative Anterior Pituitary miRNA and mRNA Expression Profiles of Bama Minipigs and Landrace Pigs Reveal Potential Molecular Network Involved in Animal Postnatal Growth. PloS one. 2015;10(7):e0131987. doi: 10.1371/journal.pone.0131987 26134288
35. Zhang Z, Florez S, Gutierrez-Hartmann A, Martin JF, Amendt BA. MicroRNAs regulate pituitary development, and microRNA 26b specifically targets lymphoid enhancer factor 1 (Lef-1), which modulates pituitary transcription factor 1 (Pit-1) expression. The Journal of biological chemistry. 2010;285(45):34718–28. doi: 10.1074/jbc.M110.126441 20807761
36. Zhai F, Cao C, Zhang L, Zhang J. miR-543 promotes colorectal cancer proliferation and metastasis by targeting KLF4. Oncotarget. 2017;8(35):59246–56. doi: 10.18632/oncotarget.19495 28938633
37. Xu J, Wang F, Wang X, He Z, Zhu X. miRNA-543 promotes cell migration and invasion by targeting SPOP in gastric cancer. OncoTargets and therapy. 2018;11:5075–82. doi: 10.2147/OTT.S161316 30174445
38. Chen P, Xu W, Luo Y, Zhang Y, He Y, Yang S, et al. MicroRNA 543 suppresses breast cancer cell proliferation, blocks cell cycle and induces cell apoptosis via direct targeting of ERK/MAPK. OncoTargets and therapy. 2017;10:1423–31. doi: 10.2147/OTT.S118366 28331335
39. Zhang H, Guo X, Feng X, Wang T, Hu Z, Que X, et al. MiRNA-543 promotes osteosarcoma cell proliferation and glycolysis by partially suppressing PRMT9 and stabilizing HIF-1alpha protein. Oncotarget. 2017;8(2):2342–55. doi: 10.18632/oncotarget.13672 27911265
40. Lee S, Yu KR, Ryu YS, Oh YS, Hong IS, Kim HS, et al. miR-543 and miR-590-3p regulate human mesenchymal stem cell aging via direct targeting of AIMP3/p18. Age. 2014;36(6):9724. doi: 10.1007/s11357-014-9724-2 25465621
41. Menon B, Gulappa T, Menon KM. miR-122 Regulates LH Receptor Expression by Activating Sterol Response Element Binding Protein in Rat Ovaries. Endocrinology. 2015;156(9):3370–80. doi: 10.1210/en.2015-1121 26125464
42. Gangisetty O, Jabbar S, Wynne O, Sarkar DK. MicroRNA-9 regulates fetal alcohol-induced changes in D2 receptor to promote prolactin production. The Journal of endocrinology. 2017;235(1):1–14. doi: 10.1530/JOE-17-0135 28710248.
43. Martini P, Sales G, Brugiolo M, Gandaglia A, Naso F, De Pitta C, et al. Tissue-specific expression and regulatory networks of pig microRNAome. PloS one. 2014;9(4):e89755. doi: 10.1371/journal.pone.0089755 24699212
44. Takeuchi J, Sakamoto A, Takizawa T. Sevoflurane anesthesia persistently downregulates muscle-specific microRNAs in rat plasma. International journal of molecular medicine. 2014;34(1):291–8. doi: 10.3892/ijmm.2014.1739 24718700.
45. Mahran YF, El-Demerdash E, Nada AS, El-Naga RN, Ali AA, Abdel-Naim AB. Growth Hormone Ameliorates the Radiotherapy-Induced Ovarian Follicular Loss in Rats: Impact on Oxidative Stress, Apoptosis and IGF-1/IGF-1R Axis. PloS one. 2015;10(10):e0140055. doi: 10.1371/journal.pone.0140055 26465611
46. Qi QE, Xi QY, Ye RS, Chen T, Cheng X, Li CY, et al. Alteration of the miRNA expression profile in male porcine anterior pituitary cells in response to GHRH and CST and analysis of the potential roles for miRNAs in regulating GH. Growth hormone & IGF research: official journal of the Growth Hormone Research Society and the International IGF Research Society. 2015;25(2):66–74. doi: 10.1016/j.ghir.2014.12.002 25613666.
Článek vyšel v časopise
PLOS One
2019 Číslo 9
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Je libo čepici místo mozkového implantátu?
- Pomůže v budoucnu s triáží na pohotovostech umělá inteligence?
- AI může chirurgům poskytnout cenná data i zpětnou vazbu v reálném čase
- Nová metoda odlišení nádorové tkáně může zpřesnit resekci glioblastomů
Nejčtenější v tomto čísle
- Graviola (Annona muricata) attenuates behavioural alterations and testicular oxidative stress induced by streptozotocin in diabetic rats
- CH(II), a cerebroprotein hydrolysate, exhibits potential neuro-protective effect on Alzheimer’s disease
- Comparison between Aptima Assays (Hologic) and the Allplex STI Essential Assay (Seegene) for the diagnosis of Sexually transmitted infections
- Assessment of glucose-6-phosphate dehydrogenase activity using CareStart G6PD rapid diagnostic test and associated genetic variants in Plasmodium vivax malaria endemic setting in Mauritania
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy