The COPD multi-dimensional phenotype: A new classification from the STORICO Italian observational study
Autoři:
Raffaele Antonelli Incalzi aff001; Giorgio Walter Canonica aff002; Nicola Scichilone aff003; Sara Rizzoli aff004; Lucia Simoni aff004; Francesco Blasi aff005;
Působiště autorů:
University Biomedical Campus of Rome, Rome, Italy
aff001; Personalized Medicine Asthma & Allergy Clinic Humanitas University Humanitas research Hospital, Rozzano, Milan, Italy
aff002; DIBIMIS, University of Palermo, Piazza delle Cliniche, Palermo, Italy
aff003; Medineos Observational Research, Modena, ltaly
aff004; Department of Pathophysiology and Transplantation, University of Milan, Internal Medicine Department, Respiratory Unit and Cystic Fibrosis Adult Center Fondazione IRCCS Cà Granda Maggiore Hospital, Milan, Italy
aff005
Vyšlo v časopise:
PLoS ONE 14(9)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0221889
Souhrn
Background
This paper is aimed to (i) develop an innovative classification of COPD, multi-dimensional phenotype, based on a multidimensional assessment; (ii) describe the identified multi-dimensional phenotypes.
Methods
An exploratory factor analysis to identify the main classificatory variables and, then, a cluster analysis based on these variables were run to classify the COPD-diagnosed 514 patients enrolled in the STORICO (trial registration number: NCT03105999) study into multi-dimensional phenotypes.
Results
The circadian rhythm of symptoms and health-related quality of life, but neither comorbidity nor respiratory function, qualified as primary classificatory variables. Five multidimensional phenotypes were identified: the MILD COPD characterized by no night-time symptoms and the best health status in terms of quality of life, quality of sleep, level of depression and anxiety, the MILD EMPHYSEMATOUS with prevalent dyspnea in the early-morning and day-time, the SEVERE BRONCHITIC with nocturnal and diurnal cough and phlegm, the SEVERE EMPHYSEMATOUS with nocturnal and diurnal dyspnea and the SEVERE MIXED COPD distinguished by higher frequency of symptoms during 24h and worst quality of life, of sleep and highest levels of depression and anxiety.
Conclusions
Our results showed that properly collected respiratory symptoms play a primary classificatory role of COPD patients. The longitudinal observation will disclose the discriminative and prognostic potential of the proposed multidimensional phenotype.
Trial registration
Trial registration number: NCT03105999, date of registration: 10th April 2017.
Klíčová slova:
Medicine and health sciences – Pulmonology – Chronic obstructive pulmonary disease – Dyspnea – Diagnostic medicine – Signs and symptoms – Pathology and laboratory medicine – Public and occupational health – Physical activity – Biology and life sciences – Physiology – Physiological processes – Coughing – Chronobiology – Circadian rhythms – Anatomy – Body fluids – Mucus – Research and analysis methods – Mathematical and statistical techniques – Statistical methods – Factor analysis – Simulation and modeling – Clustering algorithms – Physical sciences – Mathematics – Statistics – Applied mathematics – Algorithms
Zdroje
1. Lange P, Halpin DM, O'Donnell DE, MacNee W. Diagnosis, assessment, and phenotyping of COPD: beyond FEV1. Int J Chron Obstruct Pulmon Dis. 2016 Feb 19;11 Spec Iss:3–12.
2. Kumar M, Seeger W, Voswinckel R. Senescence-associated secretory phenotype and its possible role in chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol. 2014 Sep;51(3):323–33. doi: 10.1165/rcmb.2013-0382PS 25171460
3. Price D Proceedings of the IV REVIEW: NIGHT-TIME SYMPTOMS IN COPD A. AGUSTI ET AL. 192 VOLUME 20 NUMBER 121 EUROPEAN RESPIRATORY REVIEW World Asthma and COPD Forum (Paris, France, April 30 to May 3, 2011)
4. Partridge MR, Karlsson N, Small IR. Patient insight into the impact of chronic obstructive pulmonary disease in the morning: an internet survey. Curr Med Res Opin. 2009 Aug;25(8):2043–8. doi: 10.1185/03007990903103006 19569976
5. Miravitlles M, Worth H, Soler Catalauña JJ, Price D, De Benedetto F, Roche N, et al. Observational study to characterize 24-hour COPD symptoms and their relationship with patient-reported outcomes; results fromthe ASSESS study. Respir Res. 2014 Oct;21; 15: 122. doi: 10.1186/s12931-014-0122-1 25331383
6. Price D, Small M, Milligan G, Higgins V, Garcia Gil EG, Estruch J. Impact of night-time symptoms in COPD: a real-world study in five European countries. Int J Chron Obstruct Pulmon Dis. 2013; 8:595–603. doi: 10.2147/COPD.S48570 24348032
7. Bellia V, Catalano F, Scichilone N, Incalzi RA, Spatafora M, Vergani C et al. Sleep disorders in the elderly with and without chronic airflow obstruction: the SARA study. Sleep. 2003 May 1;26(3):318–23. 12749552
8. Canonica GW, Blasi F, Scichilone N, Simoni L, Zullo A, Giovannetti C et al. on behalf of STORICO study group Characterization of circadian COPD symptoms by phenotype: Methodology of the STORICO observational study. Eur J Inter Med. 2017 Sep; 43: 62–68.
9. Jones PW, Quirk FH, Baveystock CM, Littlejohns P. A self-complete measure for chronic airflow limitation. The St George's respiratory questionnaire. Am Rev Respir Dis. 1992 June;145 (6):1321–7. 1595997
10. Meguro M, Barley EA, Spencer S, Jones PW. Development and validation of an improved COPD-specific version of the St George's respiratory questionnaire. Chest. 2007 Aug;132 (2):456–63. 17646240
11. Zigmond AS, Snaith RP. The hospital anxiety and depression scale. Acta Psychiatr Scand 1983;67:361–70. 6880820
12. Pokrzywinski RF, Meads DM, McKenna SP, Glendenning GA, Revicki DA. Development and psychometric assessment of the COPD and Asthma Sleep Impact Scale (CASIS). Health Qual Life Outcomes 2009;7:98. doi: 10.1186/1477-7525-7-98 19968881
13. Ainsworth BE, Bassett DR Jr, Strath SJ, Swartz AM, O'Brien WL, Thompson RW et al. Comparison of three methods for measuring the time spent in physical activity. Med Sci Sports Exerc 2000;32:S457–64. 10993415
14. Miller MR, Hankinson J, Brusasco V, Burgos F, Casaburi R, Coates A et al. Standardisation of spirometry. Eur Respir J 2005; 26: 319–338 16055882
15. Child D. (1990). The essentials of factor analysis, second edition. London: Cassel Educational Limited.
16. Guttman L. (1953) Image Theory for the Structure of Quantitative Variables, Psychometrica, 18, 277–296.
17. Kaiser H.F., Rice J. Little Jiffy, Mark IV, Educational and Psychological Measurement. 1974; 34 (1), 111–117.
18. Truong Y., McColl R. Intrinsic motivations, self-esteem, and luxury goods consumption. Journal of Retailing and Consumer Services.2011; 18 (6): 555–561
19. Singh D, Miravitlles M, Vogelmeier C. Chronic Obstructive Pulmonary Disease Individualized Therapy: Tailored Approach to Symptom Management. Adv Ther. 2017 Feb;34(2):281–299. doi: 10.1007/s12325-016-0459-6 27981495
20. Van Boven JFM, Lavorini F, Dekhuijzen PNR, Blasi F, Price DB, Viegi G Urging Europe to put non-adherence to inhaled respiratory medication higher on the policy agenda: a report from the First European Congress on Adherence to Therapy. Eur Respir J. 2017 May 19;49(5).
21. Calverley PM, Anderson JA, Celli B, Ferguson GT, Jenkins C, Jones PW et al. Salmeterol and fluticasone propionate and survival in chronic obstructive pulmonary disease. N Engl J Med. 2007 Feb 22;356(8):775–89. 17314337
22. Tashkin DP, Celli B, Senn S, Burkhart D, Kesten S, Menjoge S et al. A 4-year trial of tiotropium in chronic obstructive pulmonary disease. N Engl J Med. 2008 Oct 9;359(15):1543–54. doi: 10.1056/NEJMoa0805800 18836213
23. Kessler R, Partridge MR, Miravitlles M, Cazzola M, Vogelmeier C, Leynaud D et al. Symptom variability in patients with severe COPD: a pan-European cross-sectional study. Eur Respir J. 2011 Feb;37 (2):264–72. doi: 10.1183/09031936.00051110 21115606
24. Partridge MR, Karlsson N, Small IR. Patient insight into the impact of chronic obstructive pulmonary disease in the morning: an internet survey. Curr Med Res Opin. 2009 Aug;25 (8):2043–8. doi: 10.1185/03007990903103006 19569976
25. Burgel PR, Paillasseur J-L, Janssens W, Piquet J, ter Riet G, Garcia-Aymerich J et al A simple algorithm for the identification of clinical COPD phenotypes Eur Respir J 2017; 50: 1701034 doi: 10.1183/13993003.01034-2017 29097431
26. Pikoula M, Quint JK, Nissen F, Hemingway H, Smeeth L, Denaxas S Identifying clinically important COPD sub-types using data-driven approaches in primary care population based electronic health records BMC Med Inform Decis Mak. 2019; 19: 86. doi: 10.1186/s12911-019-0805-0 30999919
27. Augustin IML, Spruit MA, Houben-Wilke S, Franssen FME, Vanfleteren LEGW, Gaffron S et al. The respiratory physiome: Clustering based on a comprehensive lung function assessment in patients with COPD. PLoS One. 2018 Sep 12;13(9):e0201593. doi: 10.1371/journal.pone.0201593 30208035
28. Agusti A, Bel E, Thomas M, Vogelmeier C, Brusselle G, Holgate S et al. Treatable traits: toward precision medicine of chronic airway diseases European Respiratory Journal 2016 47: 410–419; doi: 10.1183/13993003.01359-2015 26828055
29. Calle Rubio M, Casamor R, Miravitlles M. Identification and distribution of COPD phenotypes in clinical practice according to Spanish COPD Guidelines: the FENEPOC study. Int J Chron Obstruct Pulmon Dis. 2017 Aug 9;12:2373–2383. doi: 10.2147/COPD.S137872 28848338
30. Jones PW, Brusselle G, Dal Negro RW, Ferrer M, Kardos P, Levy ML et al. Health-related quality of life in patients by COPD severity within primary care in Europe. Respir Med. 2011 Jan;105(1):57–66. doi: 10.1016/j.rmed.2010.09.004 20932736
31. Corsonello A, Scarlata S, Pedone C, Bustacchini S, Fusco S, Zito A et al. Treating COPD in Older and Oldest Old Patients. Curr Pharm Des. 2015;21(13):1672–89. 25633118
Článek vyšel v časopise
PLOS One
2019 Číslo 9
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Je libo čepici místo mozkového implantátu?
- Pomůže v budoucnu s triáží na pohotovostech umělá inteligence?
- AI může chirurgům poskytnout cenná data i zpětnou vazbu v reálném čase
- Nová metoda odlišení nádorové tkáně může zpřesnit resekci glioblastomů
Nejčtenější v tomto čísle
- Graviola (Annona muricata) attenuates behavioural alterations and testicular oxidative stress induced by streptozotocin in diabetic rats
- CH(II), a cerebroprotein hydrolysate, exhibits potential neuro-protective effect on Alzheimer’s disease
- Comparison between Aptima Assays (Hologic) and the Allplex STI Essential Assay (Seegene) for the diagnosis of Sexually transmitted infections
- Assessment of glucose-6-phosphate dehydrogenase activity using CareStart G6PD rapid diagnostic test and associated genetic variants in Plasmodium vivax malaria endemic setting in Mauritania
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy