DNA barcoding of southern African crustaceans reveals a mix of invasive species and potential cryptic diversity
Autoři:
Bezeng S. Bezeng aff001; Herman F. van der Bank aff001
Působiště autorů:
African Centre for DNA Barcoding, University of Johannesburg, Auckland Park, Johannesburg, South Africa
aff001; School of Mathematics & Natural Sciences, University of Venda, P. Thohoyandou, Venda, South Africa
aff002; Department of Geography, Environmental Management and Energy Studies, University of Johannesburg, Auckland Park, Johannesburg, South Africa
aff003
Vyšlo v časopise:
PLoS ONE 14(9)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0222047
Souhrn
Globally, crustaceans represent one of the most taxonomically diverse and economically important invertebrate group. Notwithstanding, the diversity within this group is poorly known because most crustaceans are often associated with varied habits, forms, sizes and habitats; making species identification by conventional methods extremely challenging. In addition, progress towards understanding the diversity within this group especially in southern Africa has been severely hampered by the declining number of trained taxonomists, the presence of invasive alien species, over exploitation, etc. However, the advent of molecular techniques such as “DNA barcoding and Metabarcoding” can accelerate species identification and the discovery of new species. To contribute to the growing body of knowledge on crustacean diversity, we collected data from five southern African countries and used a DNA barcoding approach to build the first DNA barcode reference library for southern African crustaceans. We tested the reliability of this DNA barcode reference library to facilitate species identification using two approaches. We recovered high efficacy of specimen identification/discrimination; supported by both barcode gap and tree-base species identification methods. In addition, we identified alien invasive species and specimens with ‘no ID” in our DNA barcode reference library. The later; highlighting specimens requiring (i) further investigation and/or (ii) the potential presence of cryptic diversity or (iii) misidentifications. This unique data set although with some sampling gaps presents many opportunities for exploring the effect and extent of invasive alien species, the role of the pet trade as a pathway for crustacean species introduction into novel environments, sea food authentication, phylogenetic relationships within the larger crustacean groupings and the discovery of new species.
Klíčová slova:
Biology and life sciences – Organisms – Eukaryota – Animals – Invertebrates – Arthropoda – Crustaceans – Molecular biology – Molecular biology techniques – DNA barcoding – Evolutionary biology – Evolutionary systematics – Molecular systematics – Phylogenetics – Phylogenetic analysis – Taxonomy – Genetics – DNA – DNA libraries – Biochemistry – Nucleic acids – Ecology – Biodiversity – Ecology and environmental sciences – Species colonization – Invasive species – Research and analysis methods – Computer and information sciences – Data management
Zdroje
1. Pimm SL, Russell GJ, Gittleman JL, Brooks TM. The future of biodiversity. Science. 1995; 269, 347–350. doi: 10.1126/science.269.5222.347 17841251
2. Wilson EO. The encyclopedia of life. Trends Ecol Evol. 2003; 18, 77–80.
3. Mora C, Tittensor DP, Adl S, Simpson AGB, Worm B. How Many Species Are There on Earth and in the Ocean? PLoS Biol. 2011; 9, e1001127. doi: 10.1371/journal.pbio.1001127 21886479
4. Larsen BB, Miller EC, Rhodes MK, Wiens JJ. Inordinate Fondness Multiplied and Redistributed: the Number of Species on Earth and the New Pie of Life. Q Rev Biol. 2017; 92, 229–265.
5. Gaston KJ, May RM. Taxonomy of taxonomists. Nature. 1992; 356, 281–282.
6. Hopkins GW, Freckleton RP. Declines in the numbers of amateur and professional taxonomists: implications for conservation. Anim. Conserv. 2002; 5, 245–249. doi: 10.1017/S1367943002002299
7. Hebert PDN, Ratnasingham S, deWaard JR. Barcoding animal life: cytochrome c oxidase subunit 1divergences among closely related species. Proc Biol Sci. 2003; 270, S96–S99. doi: 10.1098/rsbl.2003.0025 12952648
8. Bezeng BS, Davies TJ, Daru BH, Kabongo RM, Maurin O, Yessoufou K, et al. Ten years of plant DNA barcoding at the African Centre for DNA Barcoding. Genome. 2017; doi: 10.1139/gen-2016-0198 28340301
9. Cawthorn DM, Hoffman LC. Deceit with decapods? Evaluating labelling accuracy of crustacean products in South Africa. Food Control. 2017; 73, 741–753.
10. Yan D, Luo JY, Han YM, Peng C, Dong XP, Chen SL, et al. Forensic DNA Barcoding and Bio-Response Studies of Animal Horn Products Used in Traditional Medicine. PLoS ONE. 2013; 8, e55854. doi: 10.1371/journal.pone.0055854 23409064
11. Staats M, Arulandhu AJ, Gravendeel B, Holst-Jensen A, Scholtens I, Peelen T, et al. Advances in DNA metabarcoding for food and wildlife forensic species identification. Anal. Bioanal. Chem. 2016; 408, 4615–4630. doi: 10.1007/s00216-016-9595-8 27178552
12. Ward RD, Hanner R, Hebert PD. The campaign to DNA barcode all fishes, FISH‐BOL. J Fish Biol. 2009; 74, 329–356. doi: 10.1111/j.1095-8649.2008.02080.x 20735564
13. Schmidt S, Schmid-Egger C, Morinière J, Haszprunar G, Hebert PDN. DNA barcoding largely supports 250 years of classical taxonomy: identifications for Central European bees (Hymenoptera, Apoidea partim). Mol. Ecol. Resour. 2015; 15, 985–1000. doi: 10.1111/1755-0998.12363 25588628
14. Van der Bank H, Greenfield R. A pioneer survey and DNA barcoding of some commonly found gastropod molluscs on Robben Island. ZooKeys. 2015; 481, 15–23. doi: 10.3897/zookeys.481.8188 25685029
15. Costa FO, deWaard JR, Boutillier J, Ratnasingham S, Dooh RT, Hajibabaei M, et al. Biological identifications through DNA barcodes: the case of the Crustacea. Can J Fish Aquat Sci. 2007; 64, 272–295. doi: 10.1139/f07-008
16. Radulovici AE, Sainte-Marie B, Dufresne F. DNA barcoding of marine crustaceans from the estuary and Gulf of St Lawrence: a regional-scale approach. Mol. Ecol. Resour. 2009; 9, 181–187. doi: 10.1111/j.1755-0998.2009.02643.x 21564977
17. Raupach MJ, Barco A, Steinke D, Beermann J, Laakmann S, Mohrbeck I, et al. The Application of DNA Barcodes for the Identification of Marine Crustaceans from the North Sea and Adjacent Regions. PLoS ONE. 2015; 10, e0139421. doi: 10.1371/journal.pone.0139421 26417993
18. Raupach MJ, Radulovici AE. Looking back on a decade of barcoding crustaceans. ZooKeys. 2015; 539, 53–81. doi: 10.3897/zookeys.539.6530 26798245
19. Witt JDS, Threloff DL, Hebert PDN. DNA barcoding reveals extraordinary cryptic diversity in an amphipod genus: implications for desert spring conservation. Mol Ecol. 2006; 172, 17–32.
20. Bekker EI, Karabanov DP, Galimov YR, Kotov AA. DNA Barcoding Reveals High Cryptic Diversity in the North Eurasian Moina Species (Crustacea: Cladocera). PLoS ONE. 2016; 11, e0161737. doi: 10.1371/journal.pone.0161737 27556403
21. Hajibabaei M, Shokralla S, Zhou X, Singer GAC, Baird DJ. Environmental Barcoding: A Next-Generation Sequencing Approach for Biomonitoring Applications Using River Benthos. PLoS ONE. 2011; 6, e17497. doi: 10.1371/journal.pone.0017497 21533287
22. Hollatz C, Leite BR, Lobo J, Froufe H, Egas C, Costa FO. Priming of a DNA metabarcoding approach for species identification and inventory in marine macrobenthic communities. Genome. 2017; 60, 260–271. doi: 10.1139/gen-2015-0220 28145743
23. Molnar JL, Gamboa RL, Revenga C, Spalding MD. Assessing the global threat of invasive species to marine biodiversity. Front. Ecol. Environ. 2008; 6, 485–492, doi: 10.1890/070064
24. Nunes AL, Zengeya TA, Measey GJ and Weyl OLF. Freshwater crayfish invasions in South Africa: past, present and potential future. Afr J Aquat Sci. 2017; 42, 309–323.
25. Picker MD, Griffiths CL. Alien and Invasive Animals—A South African Perspective: Casciola J. (Ed). 2011; Struik-Random House Publishers, Cape Town, 2011. 248pp.
26. Petersen RM, Hoffman AC, Kotze P, Marr SM. First record of the invasive Australian redclaw crayfish Cherax quadricarinatus (von Martens, 1868) in the Crocodile River, Kruger National Park, South Africa. Koedoe. 2017; 59, a1435. https://doi.org/10.4102/koedoe. v59i1.1435
27. Kuguru B, Groeneveld J, Singh S, Mchomvu B. First record of giant freshwater prawn Macrobrachium rosenbergii (de Man, 1879) from smallscale fisheries in East Africa, confirmed with DNA barcoding. BioInvasions Rec. 2019; 8, 379–391, https://doi.org/10.3391/bir.2019.8.2.19
28. Kerckhof F, De Mesel I, Degraer S. First European record of the invasive barnacle Balanus glandula Darwin, 1854. BioInvasions Rec. 2018; 7, 21–31.
29. Laverty C, Nentwig W, Dick JTA, Lucy FE. Alien aquatics in Europe: assessing the relative environmental and socioeconomic impacts of invasive aquatic macroinvertebrates and other taxa. Manag Biol Invasion. 2015; 6, 341–350.
30. Laird MC, Griffiths CL. Present distribution and abundance of the introduced barnacle Balanus glandula Darwin, 1854 in South Africa. Afr. J. Mar. Sci. 2008; 30, 93–100, https://doi.org/10.2989/AJMS.2008.30.1.9.459
31. Simon-Blecher N, Granevitze Z, Achituv Y. 2008. Balanus glandula: from North-west America to the west coast of South Africa. Afr. J. Mar. Sci. 2008; 30, 85–92. https://doi.org/10.2989/AJMS.2008.30.1.8.458
32. Bucklin A, Wiebe PH, Smolenack SB, Copley NJ, Beaudet JG, Bonner KG, et al. DNA barcodes for species identification of euphausiids (Euphausiacea, Crustacea). J Plankton Res 2007; 29: 483–493.
33. Branch GM, Griffiths CL, Branch ML, Beckley LE. Two Oceans: A guide to the marine life of southern Africa. 2010; Struik Nature, South Africa, 456pp.
34. Hebert PDN, Braukmann TWA, Prosser SWJ, Ratnasingham S, de Waard JR, Ivanova NV, et al. A Sequel to Sanger: Amplicon Sequencing That Scales. bioRxiv. 2017; http://dx.doi.org/10.1101/191619.
35. Hajibabaei M, De Waard JR, Ivanova NV, Ratnasingham S, Dooh RT, Kirk SL, et al. Critical factors for assembling a high volume of DNA barcodes. Philos Trans R Soc London B Biol Sci. 2005; 360, 1959–1967. doi: 10.1098/rstb.2005.1727 16214753
36. Edgar RC. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004; 32, 1792–1797. doi: 10.1093/nar/gkh340 15034147
37. Swofford DL. PAUP*: phylogenetic analysis using parsimony (*and other methods), version 4.0b10. 2003; Sinauer, Sunderland, Massachusetts
38. Fitch WM. Towards defining the course of evolution: minimum change for a specific tree topology. Syst Biol. 1971; 20, 406–416.
39. Phylogenies Felsenstein J. and the comparative method. Am Nat. 1985; 125, 1–15.
40. Soltis PS, Soltis DE. Applying the Bootstrap in Phylogeny Reconstruction. Stat Sci. 2003; 18, 256–267
41. Ross HA, Murugan S, Li WS. Testing the Reliability of Genetic Methods of Species Identification via Simulation. Syst. Biol. 2008; 57, 216–230. doi: 10.1080/10635150802032990 18398767
42. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 1980; 16, 111–120. doi: 10.1007/bf01731581 7463489
43. Čandek K, Kuntner M. DNA barcoding gap: reliable species identification over morphological and geographical scales. Mol. Ecol. Resour. 2015; 15, 268–277. doi: 10.1111/1755-0998.12304 25042335
44. Brown SDJ, Collins RA, Boyer S, Lefort M-C, Malumbres-Olarte J, Vink CJ, et al. SPIDER: An R package for the analysis of species identity and evolution, with particular reference to DNA barcoding. Mol Ecol Resour. 2012; 12, 562–565. doi: 10.1111/j.1755-0998.2011.03108.x 22243808
45. Ratnasingham S, Hebert PDN. BOLD: The Barcode of Life Data Systems. Mol Ecol Notes. 2007; 7, 355–364. doi: 10.1111/j.1471-8286.2007.01678.x PMCID: PMC1890991 18784790.
46. De Grave SD, Pentcheff ND, Ahyong ST, et al. A classification of living and fossil genera of decapod crustaceans. Raffles Bull. Zool. Suppl. 2009; 21, 1–109.
47. De Grave SD, Cai Y, Anker A. Global diversity of shrimps (Crustacea: Decapoda: Caridea) in freshwater. Hydrobiologia. 2008; 595, 287–293
48. Poore GCB, Bruce NL. Global Diversity of Marine Isopods (Except Asellota and Crustacean Symbionts). PLoS ONE. 2012; 7, e43529. doi: 10.1371/journal.pone.0043529 22952700
49. Griiths CL, Landschof J, Atkinson LJ. Phylum Arthropoda In: Atkinson LJand Sink KJ(eds) Field Guide to the Ofshore Marine Invertebrates of South Africa, Malachite Marketing and Media, Pretoria. 2018. pp. 133–226.
50. Bruce N, MacDiarmid A. Crabs, crayfish and other crustaceans', Te Ara—the Encyclopedia of New Zealand, http://www.TeAra.govt.nz/en/crabs-crayfish-and-other-crustaceans/print. 2006. (Last accessed 12 June 2019).
51. Scholtz G, Richter S. Phylogenetic systematics of the reptantian Decapoda (Crustacea, Malacostraca). Zool. J. Lin. Soc. 1995; 113, 289–328.
52. Schram FR. Phylogeny of decapods: moving towards a consensus. Hydrobiologia. 2001; 449, 1–20.
53. Dixon CJ, Ahyong ST, Schram FR. A new hypothesis of decapod phylogeny. Crustaceana. 2003; 76, 935–975.
54. Shen B, Scholtz B. Mitogenomic analysis of decapod crustacean phylogeny corroborates traditional views on their relationships. Mol. Phylogenet. Evol. 2013; 66, 776–789 doi: 10.1016/j.ympev.2012.11.002 23202543
55. Ahyong ST, O’Meally D. Phylogeny of the Decapoda Reptantia: resolution using three molecular loci and morphology. Raffles Bull. Zool 2004; 52, 673–693.
56. Porter ML, Pérez-Losada M, Crandall KA. Model-based multi-locus estimation of decapod phylogeny and divergence times. Mol. Phylogenet. Evol. 2005; 37, 355–369. doi: 10.1016/j.ympev.2005.06.021 16112880
57. Ahyong ST. Phylogeny of the clawed lobsters (Decapoda Homarida). Zootaxa 2006; 1109, 1–14.
58. Ahyong ST, Lai JCY, Sharkey D, Colgan DJ, Ng PKL. Phylogenetics of the brachyuran crabs (Crustacea: Decapoda): the status of Podotremata based on small subunit nuclear ribosomal RNA. Mol. Phylogenet. Evol 2007; 45, 576–586. doi: 10.1016/j.ympev.2007.03.022 17548212
59. Tsang LM, Ma KY, Ahyong ST, Chan TY, Chu KH. Phylogeny of Decapoda using two nuclear protein-coding genes: origin and evolution of the Reptantia. Mol. Phylogenet. Evol. 2008; 48, 359–368. doi: 10.1016/j.ympev.2008.04.009 18501643
60. Ahyong ST, Schnabel KE, Maas EW. Anomuran phylogeny: new insights from molecular data. In: Martin JW, Felder DL, Crandall KA. (Eds.), Decapod Crustacean Phylogenetics (Crustacean Issues 18). 2009; CRC Press, Boca Raton, pp.399–414.
61. Bracken HD, Toon A, Felder DL, Martin JW, Finley M, Rasmussen J, et al. The decapod tree of life: compiling the data and moving toward a consensus of decapod evolution. Arthr. Syst. Phylog. 2009; 67, 99–116.
62. Toon A, Finley M, Staples J, Crandall KA. Decapod phylogenetics and molecular evolution. In: Martin JW, Felder DL, Crandall KA. (Eds.), Decapod Crustacean Phylogenetics (Crustacean Issues 18). 2009; CRC Press, Boca Raton, pp. 15–30.
63. Collins RA, Cruickshank RH. The seven deadly sins of DNA barcoding. Mol Ecol Resour. 2012; 13, 969–975. doi: 10.1111/1755-0998.12046 23280099
64. Uderbayev T, Patoka J, Beisembayev R, Petrtyl M, Bláha M, Kouba A. Risk assessment of pet-traded decapod crustaceans in the Republic of Kazakhstan, the leading country in Central Asia. Knowl. Manag. Aquat. Ecosyst. 2017; 418, 30.
Článek vyšel v časopise
PLOS One
2019 Číslo 9
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Je libo čepici místo mozkového implantátu?
- Pomůže v budoucnu s triáží na pohotovostech umělá inteligence?
- AI může chirurgům poskytnout cenná data i zpětnou vazbu v reálném čase
- Nová metoda odlišení nádorové tkáně může zpřesnit resekci glioblastomů
Nejčtenější v tomto čísle
- Graviola (Annona muricata) attenuates behavioural alterations and testicular oxidative stress induced by streptozotocin in diabetic rats
- CH(II), a cerebroprotein hydrolysate, exhibits potential neuro-protective effect on Alzheimer’s disease
- Comparison between Aptima Assays (Hologic) and the Allplex STI Essential Assay (Seegene) for the diagnosis of Sexually transmitted infections
- Assessment of glucose-6-phosphate dehydrogenase activity using CareStart G6PD rapid diagnostic test and associated genetic variants in Plasmodium vivax malaria endemic setting in Mauritania
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy