Ontogenetic expression of thyroid hormone signaling genes: An in vitro and in vivo species comparison
Autoři:
Kyla M. Walter aff001; Katharina Dach aff002; Keri Hayakawa aff001; Susanne Giersiefer aff002; Heike Heuer aff002; Pamela J. Lein aff001; Ellen Fritsche aff002
Působiště autorů:
Department of Molecular Biosciences, University of California-Davis, School of Veterinary Medicine, Davis, CA, United States of America
aff001; IUF–Leibniz Research Institute for Environmental Medicine, Dusseldorf, Germany
aff002; Dept. Endocrinology, University Hospital Essen, Essen, Germany
aff003
Vyšlo v časopise:
PLoS ONE 14(9)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0221230
Souhrn
Thyroid hormone (TH) is essential for brain development. While disruption of TH signaling by environmental chemicals has been discussed as a mechanism of developmental neurotoxicity (DNT) for more than a decade, there remains a paucity of information linking specific TH disrupting chemicals to adverse neurodevelopmental outcomes. This data gap reflects, in part, the fact that the molecular machinery of TH signaling is complex and varies according to cell type and developmental time. Thus, establishing a baseline of the ontogenetic profile of expression of TH signaling molecules in relevant cell types is critical for developing in vitro and alternative systems-based models for screening TH disrupting chemicals for DNT. Here, we characterize the transcriptomic profile of molecules critical to TH signaling across three species–human, rat, and zebrafish–in vitro and in vivo across different stages of neurodevelopment. Our data indicate that while cultured human and rat neural progenitor cells, primary cultures of rat cortical cells, and larval zebrafish all express a fairly comprehensive transcriptome of TH signaling molecules, the spatiotemporal expression profiles as well as the responses to TH vary across species and developmental stages. The data presented here provides a roadmap for identifying appropriate in vitro and in simpler systems-based models for mechanistic studies and screening of chemicals that alter neurodevelopment via interference with TH action.
Klíčová slova:
Research and analysis methods – Animal studies – Experimental organism systems – Model organisms – Zebrafish – Animal models – Biological cultures – Cell cultures – Neurospheres – Extraction techniques – RNA extraction – Biology and life sciences – Organisms – Eukaryota – Animals – Vertebrates – Fish – Osteichthyes – Genetics – Gene expression – Developmental biology – Morphogenesis – Neurodevelopment – Embryology – Embryos – Life cycles – Larvae – Molecular biology – Molecular biology techniques – Artificial gene amplification and extension – Polymerase chain reaction
Zdroje
1. Crofton KM (2008) Thyroid disrupting chemicals: mechanisms and mixtures. International journal of andrology 31: 209–223. doi: 10.1111/j.1365-2605.2007.00857.x 18217984
2. Gilbert ME, Rovet J, Chen Z, Koibuchi N (2012) Developmental thyroid hormone disruption: prevalence, environmental contaminants and neurodevelopmental consequences. Neurotoxicology 33: 842–852. doi: 10.1016/j.neuro.2011.11.005 22138353
3. Préau L, Fini JB, Morvan-Dubois G, Demeneix B (2015) Thyroid hormone signaling during early neurogenesis and its significance as a vulnerable window for endocrine disruption. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms 1849: 112–121.
4. Boyages SC, Halpern JP (1993) Endemic cretinism: toward a unifying hypothesis. Thyroid 3: 59–69. doi: 10.1089/thy.1993.3.59 8499765
5. Cao X-Y, Jiang X-M, Dou Z-H, Rakeman MA, Zhang M-L, O'donnell K, et al. (1994) Timing of vulnerability of the brain to iodine deficiency in endemic cretinism. New England journal of medicine 331: 1739–1744. doi: 10.1056/NEJM199412293312603 7984194
6. DeLong GR, Stanbury JB, Fierro‐Benitez R (1985) Neurological Signs in Congenital Iodine‐Deficiency Disorder (Endemic Cretinism). Developmental Medicine & Child Neurology 27: 317–324.
7. Haddow JE, Palomaki GE, Allan WC, Williams JR, Knight GJ, Gagnon J, et al. (1999) Maternal thyroid deficiency during pregnancy and subsequent neuropsychological development of the child. N Engl J Med 341: 549–555. doi: 10.1056/NEJM199908193410801 10451459
8. Pop VJ, Brouwers EP, Vader HL, Vulsma T, Van Baar AL, De Vijlder JJ (2003) Maternal hypothyroxinaemia during early pregnancy and subsequent child development: a 3‐year follow‐up study. Clinical endocrinology 59: 282–288. doi: 10.1046/j.1365-2265.2003.01822.x 12919150
9. Bernal J (2017) Thyroid hormone regulated genes in cerebral cortex development. Journal of Endocrinology 232: R83–R97. doi: 10.1530/JOE-16-0424 27852726
10. Fan F, Hu R, Munzli A, Chen Y, Dunn RT 2nd, Weikl K, et al. (2015) Utilization of human nuclear receptors as an early counter screen for off-target activity: a case study with a compendium of 615 known drugs. Toxicol Sci 145: 283–295. doi: 10.1093/toxsci/kfv052 25752796
11. Friedman KP, Watt ED, Hornung MW, Hedge JM, Judson RS, Crofton KM, et al. (2016) Tiered high-throughput screening approach to identify thyroperoxidase inhibitors within the ToxCast Phase I and II chemical libraries. Toxicological Sciences: kfw034.
12. Hallinger DR, Murr AS, Buckalew AR, Simmons SO, Stoker TE, Laws SC (2016) Development of a screening approach to detect thyroid disrupting chemicals that inhibit the human sodium iodide symporter (nis). Toxicology in Vitro.
13. Simon C, Onghena M, Covaci A, Van Hoeck E, Van Loco J, Vandermarken T, et al. (2016) Screening of endocrine activity of compounds migrating from plastic baby bottles using a multi-receptor panel of in vitro bioassays. Toxicology in Vitro 37: 121–133. doi: 10.1016/j.tiv.2016.09.008 27633901
14. Zoeller RT, Dowling AL, Vas AA (2000) Developmental exposure to polychlorinated biphenyls exerts thyroid hormone-like effects on the expression of RC3/neurogranin and myelin basic protein messenger ribonucleic acids in the developing rat brain. Endocrinology 141: 181–189. doi: 10.1210/endo.141.1.7273 10614638
15. Mottis A, Mouchiroud L, Auwerx J (2013) Emerging roles of the corepressors NCoR1 and SMRT in homeostasis. Genes & development 27: 819–835.
16. De Groot L, Beck-Peccoz P, Chrousos G, Dungan K, Grossman A, Hershman J, et al. (2015) Thyroid Hormones in Brain Development and Function—Endotext.
17. Bernal J, Guadano-Ferraz A, Morte B (2015) Thyroid hormone transporters-functions and clinical implications. Nat Rev Endocrinol 11: 690.
18. Gothie JD, Demeneix B, Remaud S (2017) Comparative approaches to understanding thyroid hormone regulation of neurogenesis. Mol Cell Endocrinol 459: 104–115. doi: 10.1016/j.mce.2017.05.020 28545819
19. Bernal J, Pekonen F (1984) Ontogenesis of the nuclear 3,5,3'-triiodothyronine receptor in the human fetal brain. Endocrinology 114: 677–679. doi: 10.1210/endo-114-2-677 6317365
20. Workman AD, Charvet CJ, Clancy B, Darlington RB, Finlay BL (2013) Modeling transformations of neurodevelopmental sequences across mammalian species. J Neurosci 33: 7368–7383. doi: 10.1523/JNEUROSCI.5746-12.2013 23616543
21. Perez-Castillo A, Bernal J, Ferreiro B, Pans T (1985) The early ontogenesis of thyroid hormone receptor in the rat fetus. Endocrinology 117: 2457–2461. doi: 10.1210/endo-117-6-2457 2998737
22. Katharina Baumann JD; Barenys Marta; Giersiefer Susanne; Goniwiecha Janette; Lein Pamela J..; Fritsche Ellen (2015) Application of the Neurosphere Assay for DNT Hazard Assessment: Challenges and Limitations. In: Methods in Pharmacology and Toxicology. Methods in Pharmacology and Toxicology Humana Press: 1–19.
23. Harrill JA, Chen H, Streifel KM, Yang D, Mundy WR, Lein PJ (2015) Ontogeny of biochemical, morphological and functional parameters of synaptogenesis in primary cultures of rat hippocampal and cortical neurons. Mol Brain 8: 10. doi: 10.1186/s13041-015-0099-9 25757474
24. Walter KM, Miller GW, Chen X, Yaghoobi B, Puschner B, Lein PJ (2019) Effects of thyroid hormone disruption on the ontogenetic expression of thyroid hormone signaling genes in developing zebrafish (Danio rerio). Gen Comp Endocrinol 272: 20–32. doi: 10.1016/j.ygcen.2018.11.007 30448381
25. Haggard DE, Noyes PD, Waters KM, Tanguay RL (2018) Transcriptomic and phenotypic profiling in developing zebrafish exposed to thyroid hormone receptor agonists. Reprod Toxicol 77: 80–93. doi: 10.1016/j.reprotox.2018.02.006 29458080
26. Horn S, Heuer H (2010) Thyroid hormone action during brain development: more questions than answers. Molecular and cellular endocrinology 315: 19–26. doi: 10.1016/j.mce.2009.09.008 19765631
27. Wayman GA, Impey S, Marks D, Saneyoshi T, Grant WF, Derkach V, et al. (2006) Activity-dependent dendritic arborization mediated by CaM-kinase I activation and enhanced CREB-dependent transcription of Wnt-2. Neuron 50: 897–909. doi: 10.1016/j.neuron.2006.05.008 16772171
28. Chen Y, Stevens B, Chang J, Milbrandt J, Barres BA, Hell JW (2008) NS21: re-defined and modified supplement B27 for neuronal cultures. J Neurosci Methods 171: 239–247. doi: 10.1016/j.jneumeth.2008.03.013 18471889
29. Baumann J, Barenys M, Gassmann K, Fritsche E (2014) Comparative human and rat “neurosphere assay” for developmental neurotoxicity testing. Current protocols in toxicology: 12.21. 11–12.21. 24.
30. Yuan JS, Wang D, Stewart CN (2008) Statistical methods for efficiency adjusted real‐time PCR quantification. Biotechnology journal 3: 112–123. doi: 10.1002/biot.200700169 18074404
31. Barateiro A, Fernandes A (2014) Temporal oligodendrocyte lineage progression: in vitro models of proliferation, differentiation and myelination. Biochim Biophys Acta 1843: 1917–1929. doi: 10.1016/j.bbamcr.2014.04.018 24768715
32. Bayer SA, Altman J, Russo RJ, Zhang X (1993) Timetables of neurogenesis in the human brain based on experimentally determined patterns in the rat. Neurotoxicology 14: 83–144. 8361683
33. Bernal J (2005) Thyroid hormones and brain development. Vitam Horm 71: 95–122. doi: 10.1016/S0083-6729(05)71004-9 16112266
34. Hjorth J, Key B (2002) Development of axon pathways in the zebrafish central nervous system. Int J Dev Biol 46: 609–619. 12141449
35. Howdeshell KL (2002) A model of the development of the brain as a construct of the thyroid system. Environmental Health Perspectives 110: 337–348.
36. Mueller T, Wullimann MF (2003) Anatomy of neurogenesis in the early zebrafish brain. Developmental Brain Research 140: 137–155. doi: 10.1016/s0165-3806(02)00583-7 12524185
37. Wullimann MF (2009) Secondary neurogenesis and telencephalic organization in zebrafish and mice: a brief review. Integr Zool 4: 123–133. doi: 10.1111/j.1749-4877.2008.00140.x 21392282
38. Dong H, Yauk CL, Rowan-Carroll A, You S-H, Zoeller RT, Lambert I, et al. (2009) Identification of Thyroid Hormone Receptor Binding Sites and Target Genes Using ChIP-on-Chip in Developing Mouse Cerebellum. PLOS ONE 4: e4610. doi: 10.1371/journal.pone.0004610 19240802
39. Desouza LA, Sathanoori M, Kapoor R, Rajadhyaksha N, Gonzalez LE, Kottmann AH, et al. (2011) Thyroid Hormone Regulates the Expression of the Sonic Hedgehog Signaling Pathway in the Embryonic and Adult Mammalian Brain. Endocrinology 152: 1989–2000. doi: 10.1210/en.2010-1396 21363934
40. Gilbert ME, Sanchez-Huerta K, Wood C (2016) Mild Thyroid Hormone Insufficiency During Development Compromises Activity-Dependent Neuroplasticity in the Hippocampus of Adult Male Rats. Endocrinology 157: 774–787. doi: 10.1210/en.2015-1643 26606422
41. Thompson CC, Bottcher MC (1997) The product of a thyroid hormone-responsive gene interacts with thyroid hormone receptors. Proceedings of the National Academy of Sciences of the United States of America 94: 8527–8532. doi: 10.1073/pnas.94.16.8527 9238010
42. López-Espíndola D, Morales-Bastos C, Grijota-Martínez C, Liao X-H, Lev D, Sugo E, et al. (2014) Mutations of the thyroid hormone transporter MCT8 cause prenatal brain damage and persistent hypomyelination. The Journal of Clinical Endocrinology & Metabolism 99: E2799–E2804.
43. Namba N, Etani Y, Kitaoka T, Nakamoto Y, Nakacho M, Bessho K, et al. (2008) Clinical phenotype and endocrinological investigations in a patient with a mutation in the MCT8 thyroid hormone transporter. European journal of pediatrics 167: 785–791. doi: 10.1007/s00431-007-0589-6 17899191
44. Rodrigues F, Grenha J, Ortez C, Nascimento A, Morte B, Monica M, et al. (2014) Hypotonic male infant and MCT8 deficiency-a diagnosis to think about. BMC pediatrics 14: 252. doi: 10.1186/1471-2431-14-252 25284458
45. Tonduti D, Vanderver A, Berardinelli A, Schmidt JL, Collins CD, Novara F, et al. (2013) MCT8 deficiency: extrapyramidal symptoms and delayed myelination as prominent features. Journal of child neurology 28: 795–800. doi: 10.1177/0883073812450944 22805248
46. Chan SY, Martín‐Santos A, Loubiere L, Gonzalez A, Stieger B, Logan A, et al. (2011) The expression of thyroid hormone transporters in the human fetal cerebral cortex during early development and in N‐Tera‐2 neurodifferentiation. The Journal of physiology 589: 2827–2845. doi: 10.1113/jphysiol.2011.207290 21486766
47. Hofrichter M, Nimtz L, Tigges J, Kabiri Y, Schroter F, Royer-Pokora B, et al. (2017) Comparative performance analysis of human iPSC-derived and primary neural progenitor cells (NPC) grown as neurospheres in vitro. Stem Cell Res 25: 72–82. doi: 10.1016/j.scr.2017.10.013 29112887
48. Stiles J, Jernigan TL (2010) The basics of brain development. Neuropsychology review 20: 327–348.
49. Bernal J (2000) Thyroid Hormones in Brain Development and Function—Endotext.
50. Schreiber T, Gassmann K, Gotz C, Hubenthal U, Moors M, Krause G, et al. (2010) Polybrominated diphenyl ethers induce developmental neurotoxicity in a human in vitro model: evidence for endocrine disruption. Environ Health Perspect 118: 572–578. doi: 10.1289/ehp.0901435 20368126
51. Barca-Mayo O, Liao X-H, Alonso M, Di Cosmo C, Hernandez A, Refetoff S, et al. (2011) Thyroid hormone receptor α and regulation of type 3 deiodinase. Molecular Endocrinology 25: 575–583. doi: 10.1210/me.2010-0213 21292823
52. Gil-Ibáñez P, Bernal J, Morte B (2014) Thyroid hormone regulation of gene expression in primary cerebrocortical cells: role of thyroid hormone receptor subtypes and interactions with retinoic acid and glucocorticoids. PloS one 9: e91692. doi: 10.1371/journal.pone.0091692 24618783
53. Kido Y, Tamai I, Uchino H, Suzuki F, Sai Y, Tsuji A (2001) Molecular and functional identification of large neutral amino acid transporters LAT1 and LAT2 and their pharmacological relevance at the blood‐brain barrier. Journal of pharmacy and pharmacology 53: 497–503. doi: 10.1211/0022357011775794 11341366
54. Vancamp P, Darras VM (2018) From zebrafish to human: A comparative approach to elucidate the role of the thyroid hormone transporter MCT8 during brain development. Gen Comp Endocrinol 265: 219–229. doi: 10.1016/j.ygcen.2017.11.023 29183795
55. Gao B, Hagenbuch B, Kullak-Ublick GA, Benke D, Aguzzi A, Meier PJ (2000) Organic anion-transporting polypeptides mediate transport of opioid peptides across blood-brain barrier. Journal of Pharmacology and Experimental Therapeutics 294: 73–79. 10871297
56. Vancamp P, Darras VM (2017) From zebrafish to human: A comparative approach to elucidate the role of the thyroid hormone transporter MCT8 during brain development. Gen Comp Endocrinol.
57. Hernandez A, Martinez ME, Fiering S, Galton VA, Germain DS (2006) Type 3 deiodinase is critical for the maturation and function of the thyroid axis. The Journal of clinical investigation 116: 476–484. doi: 10.1172/JCI26240 16410833
58. Tu HM, Legradi G, Bartha T, Salvatore D, Lechan RM, Larsen PR (1999) Regional Expression of the Type 3 Iodothyronine Deiodinase Messenger Ribonucleic Acid in the Rat Central Nervous System and Its Regulation by Thyroid Hormone 1. Endocrinology 140: 784–790. doi: 10.1210/endo.140.2.6486 9927306
59. Guadaño-Ferraz A, Obregón MJ, Germain DLS, Bernal J (1997) The type 2 iodothyronine deiodinase is expressed primarily in glial cells in the neonatal rat brain. Proceedings of the National Academy of Sciences 94: 10391–10396.
60. Dong W, Macaulay LJ, Kwok KW, Hinton DE, Stapleton HM (2013) Using whole mount in situ hybridization to examine thyroid hormone deiodinase expression in embryonic and larval zebrafish: a tool for examining OH-BDE toxicity to early life stages. Aquatic toxicology 132: 190–199. doi: 10.1016/j.aquatox.2013.02.008 23531416
61. Zhang Y, Chen K, Sloan SA, Bennett ML, Scholze AR, O'Keeffe S, et al. (2014) An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. Journal of Neuroscience 34: 11929–11947. doi: 10.1523/JNEUROSCI.1860-14.2014 25186741
62. Thompson CC, Potter GB (2000) Thyroid hormone action in neural development. Cereb Cortex 10: 939–945. doi: 10.1093/cercor/10.10.939 11007544
63. Denver RJ, Williamson KE (2009) Identification of a thyroid hormone response element in the mouse Kruppel-like factor 9 gene to explain its postnatal expression in the brain. Endocrinology 150: 3935–3943. doi: 10.1210/en.2009-0050 19359381
64. Baas D, Bourbeau D, Sarlieve LL, Ittel ME, Dussault JH, Puymirat J (1997) Oligodendrocyte maturation and progenitor cell proliferation are independently regulated by thyroid hormone. Glia 19: 324–332. 9097076
65. Dach K, Bendt F, Huebenthal U, Giersiefer S, Lein PJ, Heuer H, et al. (2017) BDE-99 impairs differentiation of human and mouse NPCs into the oligodendroglial lineage by species-specific modes of action. Sci Rep 7: 44861. doi: 10.1038/srep44861 28317842
66. Thompson CC (1996) Thyroid hormone-responsive genes in developing cerebellum include a novel synaptotagmin and a hairless homolog. J Neurosci 16: 7832–7840. 8987811
Článek vyšel v časopise
PLOS One
2019 Číslo 9
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Je libo čepici místo mozkového implantátu?
- Pomůže v budoucnu s triáží na pohotovostech umělá inteligence?
- AI může chirurgům poskytnout cenná data i zpětnou vazbu v reálném čase
- Nová metoda odlišení nádorové tkáně může zpřesnit resekci glioblastomů
Nejčtenější v tomto čísle
- Graviola (Annona muricata) attenuates behavioural alterations and testicular oxidative stress induced by streptozotocin in diabetic rats
- CH(II), a cerebroprotein hydrolysate, exhibits potential neuro-protective effect on Alzheimer’s disease
- Comparison between Aptima Assays (Hologic) and the Allplex STI Essential Assay (Seegene) for the diagnosis of Sexually transmitted infections
- Assessment of glucose-6-phosphate dehydrogenase activity using CareStart G6PD rapid diagnostic test and associated genetic variants in Plasmodium vivax malaria endemic setting in Mauritania
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy