The expression of equine keratins K42 and K124 is restricted to the hoof epidermal lamellae of Equus caballus
Autoři:
Caitlin Armstrong aff001; Lynne Cassimeris aff002; Claire Da Silva Santos aff002; Yagmur Micoogullari aff002; Bettina Wagner aff003; Susanna Babasyan aff003; Samantha Brooks aff004; Hannah Galantino-Homer aff001
Působiště autorů:
Department of Clinical Studies, New Bolton Center, University of Pennsylvania, School of Veterinary Medicine, Kennett Square, Pennsylvania, United States of America
aff001; Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, United States of America
aff002; Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
aff003; Department of Animal Sciences and University of Florida Genetics institute, University of Florida, Gainesville, Florida, United States of America
aff004
Vyšlo v časopise:
PLoS ONE 14(9)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0219234
Souhrn
The equine hoof inner epithelium is folded into primary and secondary epidermal lamellae which increase the dermo-epidermal junction surface area of the hoof and can be affected by laminitis, a common disease of equids. Two keratin proteins (K), K42 and K124, are the most abundant keratins in the hoof lamellar tissue of Equus caballus. We hypothesize that these keratins are lamellar tissue-specific and could serve as differentiation- and disease-specific markers. Our objective was to characterize the expression of K42 and K124 in equine stratified epithelia and to generate monoclonal antibodies against K42 and K124. By RT-PCR analysis, keratin gene (KRT) KRT42 and KRT124 expression was present in lamellar tissue, but not cornea, haired skin, or hoof coronet. In situ hybridization studies showed that KRT124 localized to the suprabasal and, to a lesser extent, basal cells of the lamellae, was absent from haired skin and hoof coronet, and abruptly transitions from KRT124-negative coronet to KRT124-positive proximal lamellae. A monoclonal antibody generated against full-length recombinant equine K42 detected a lamellar keratin of the appropriate size, but also cross-reacted with other epidermal keratins. Three monoclonal antibodies generated against N- and C-terminal K124 peptides detected a band of the appropriate size in lamellar tissue and did not cross-react with proteins from haired skin, corneal limbus, hoof coronet, tongue, glabrous skin, oral mucosa, or chestnut on immunoblots. K124 localized to lamellar cells by indirect immunofluorescence. This is the first study to demonstrate the localization and expression of a hoof lamellar-specific keratin, K124, and to validate anti-K124 monoclonal antibodies.
Klíčová slova:
Equines – Horses – Immunoblotting – Reverse transcriptase-polymerase chain reaction – Keratins – Nails – Monoclonal antibodies
Zdroje
1. Schweizer J, Bowden PE, Coulombe PA, Langbein L, Lane EB, Magin TM, et al. New consensus nomenclature for mammalian keratins. J Cell Biol 2006;174:169–74. doi: 10.1083/jcb.200603161 16831889
2. Bragulla HH, Homberger DG. Structure and functions of keratin proteins in simple, stratified, keratinized and cornified epithelia. J Anatomy 2009;214:516–59.
3. Ramms L, Fabris G, Windoffer R, Schwarz N, Springer R, Zhou C, et al. Keratins as the main component for the mechanical integrity of keratinocytes. Proc Natl Acad Sci U S A 2013;110(46):18513–8. doi: 10.1073/pnas.1313491110 24167246
4. Homberg M, Magin TM. Beyond expectations: novel insights into epidermal keratin function and regulation. Int Rev Cell Mol Biol 2014;311:265–306. doi: 10.1016/B978-0-12-800179-0.00007-6 24952920
5. Lane EB, McLean WH. Keratins and skin disorders. J Pathol 2004;204(4):355–66. doi: 10.1002/path.1643 15495218
6. Liao H, Sayers JM, Wilson NJ, Irvine AD, Mellerio JE, Baselga E, et al. A spectrum of mutations in keratins K6a, K16 and K17 causing pachyonychia congenita. J Derm Sci 2007;48:199–205.
7. McGowan KM, Coulombe PA. Keratin 17 expression in the hard epithelial context of the hair and nail, and its relevance for the pachyonychia congenita phenotype. J Invest Dermatol 2000;114(6):1101–7. doi: 10.1046/j.1523-1747.2000.00986.x 10844551
8. Jin L, Wang G. Keratin 17: a critical player in the pathogenesis of psoriasis. Med Res Rev 2014;34(2):438–54. doi: 10.1002/med.21291 23722817
9. Fuchs E, Weber K. Intermediate filaments: Structure, dynamics, function, and disease. Annu Rev Biochem 1994;63:345–82. doi: 10.1146/annurev.bi.63.070194.002021 7979242
10. Moll R, Divo M, Langbein L. The human keratins: biology and pathology. Histochem Cell Biol 2008;129:705–33. doi: 10.1007/s00418-008-0435-6 18461349
11. Lee CH, Coulombe PA. Self-organization of keratin intermediate filaments into cross-linked networks. J Cell Biol 2009;186(3):409–21. doi: 10.1083/jcb.200810196 19651890
12. Davies HMS, Merritt JS, Thomason JJ. Biomechanics of the equine foot. In: Floyd AE, Mansmann RA, editors. Equine Podiatry.St. Louis, MO: Saunders Elsevier; 2007. p. 42–56.
13. Roland ES, Hull ML, Stover SM. Design and demonstration of a dynamometric horseshoe for measuring ground reaction loads of horses during racing conditions. J Biomech 2005;38(10):2102–12. doi: 10.1016/j.jbiomech.2004.08.024 16084211
14. Bragulla H, Hirschberg RM. Horse hooves and bird feathers: Two model systems for studying the structure and development of highly adapted integumentary accessory organs—The role of the dermo-epidermal interface for the micro-architecture of complex epidermal structures. J Exp Zool 2003;298B:140–51.
15. Pollitt CC. The anatomy and physiology of the suspensory apparatus of the distal phalanx. Vet Clin North Am Equine Pract 2010;26:29–49. doi: 10.1016/j.cveq.2010.01.005 20381734
16. MacFadden BJ. What's the use? Functional morphology of feeding and locomotion. Fossil horses: Systematics, paleobiology, and evolution of the family equidae.New York, NY: Cambridge University Press; 1992. p. 229–62.
17. Fleckman P, Jaeger K, Silva KA, Sundberg JP. Comparative anatomy of mouse and human nail units. Anat Rec (Hoboken) 2013;296(3):521–32.
18. Hood DM. The mechanisms and consequences of structural failure of the foot. Vet Clin North Am Equine Pract 1999;15(2):437–61. 10472121
19. Collins SN, Van Eps AW, Kuwano A, Pollitt CC. The Lamellar Wedge. Vet Clin North Am Equine Pract 2010;26:179–95. doi: 10.1016/j.cveq.2010.01.004 20381746
20. Engiles JB, Galantino-Homer H, Boston R, McDonald D, Dishowitz M, Hankenson KD. Osteopathology in the equine distal phalanx associated with the development and progression of laminitis. J Vet Pathol 2015;52(5):928–44.
21. Wattle O. Cytokeratins of the equine hoof wall, chestnut and skin: bio- and immunohisto-chemistry. Equine Vet J Suppl 1998;26:66–80.
22. Wattle O. Cytokeratins of the stratum medium and stratum internum of the equine hoof wall in acute laminitis. Acta Vet Scand 2000;41(4):363–79. 11234970
23. Carter RA, Shekk V, de Laat MA, Pollitt CC, Galantino-Homer HL. Novel keratins identified by quantitative proteomic analysis as the major cytoskeletal proteins of equine (Equus caballus) hoof lamellar tissue. J Anim Sci 2010 Jul 9;88(12):3843–55. doi: 10.2527/jas.2010-2964 20622188
24. Linardi R, Megee S, Mainardi S, Senoo M, Galantino-Homer H. Expression and localization of epithelial stem cell and differentiation markers in equine skin, eye and hoof. Vet Dermatol 2015;26(4):213–e47. doi: 10.1111/vde.12214 25963063
25. Balmer P, Bauer A, Pujar S, McGarvey KM, Welle M, Galichet A, et al. A curated catalog of canine and equine keratin genes. PLoS One 2017;12(8):e0180359. doi: 10.1371/journal.pone.0180359 28846680
26. Tong X, Coulombe PA. A novel mouse type I intermediate filament gene, keratin 17n (K17n), exhibits preferred expression in nail tissue. J Invest Dermatol 2004;122:965–70. doi: 10.1111/j.0022-202X.2004.22422.x 15102087
27. Hesse M, Zimek A, Weber K, Magin TM. Comprehensive analysis of keratin gene clusters in humans and rodents. European Journal of Cell Biology 2004;83:19–26. doi: 10.1078/0171-9335-00354 15085952
28. Zimek A, Weber K. The organization of the keratin I and II gene clusters in placental mammals and marsupials show a striking similarity. European Journal of Cell Biology 2006;85:83–9. doi: 10.1016/j.ejcb.2005.10.001 16439307
29. Carter RA, Engiles JB, Megee SO, Senoo M, Galantino-Homer HL. Decreased expression of p63, a regulator of epidermal stem cells, in the chronic laminitic equine hoof. Equine Veterinary Journal 2011;43(5):543–51. doi: 10.1111/j.2042-3306.2010.00325.x 21496086
30. Galantino-Homer H, Carter R, Megee S, Engiles J, Orsini J, Pollitt C. The Laminitis Discovery Database. J Equine Vet Sci 2010;30(2):101.
31. Pollitt CC. Basement membrane pathology: a feature of acute equine laminitis. Equine Veterinary Journal 1996;28(1):38–46. doi: 10.1111/j.2042-3306.1996.tb01588.x 8565952
32. Clark RK, Galantino-Homer H. Wheat Germ Agglutinin as a Counterstain for Immunofluorescence Studies of Equine Hoof Lamellae. Exp Dermatol 2014;23(9):677–8. doi: 10.1111/exd.12495 25040657
33. Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, et al. Primer3—new capabilities and interfaces. Nucleic Acids Research 2012;40(15):e115. doi: 10.1093/nar/gks596 22730293
34. Wolenski FS, Layden MJ, Martindale MQ, Gilmore TD, Finnerty JR. Characterizing the spatiotemporal expression of RNAs and proteins in the starlet sea anemone Nematostella vectensis. Nat Protoc 2013;8:900–15. doi: 10.1038/nprot.2013.014 23579779
35. Wagner B, Hillegas JM, Babasyan S. Monoclonal antibodies to equine CD23 identify the low-affinity receptor for IgE on subpopulations of IgM+ and IgG1+ B-cells in horses. Vet Immunol Immunopathol 2012;146(2):125–34. doi: 10.1016/j.vetimm.2012.02.007 22405681
36. Wagner B, Radbruch A, Rohwer J, Leibold W. Monoclonal anti-equine IgE antibodies with specificity for different epitopes on the immunoglobulin heavy chain of native IgE. Vet Immunol Immunopathol 2003;92(1–2):45–60. doi: 10.1016/s0165-2427(03)00007-2 12628763
37. Schnabel CL, Wemette M, Babasyan S, Freer H, Baldwin C, Wagner B. C-C motif chemokine ligand (CCL) production in equine peripheral blood mononuclear cells identified by newly generated monoclonal antibodies. Vet Immunol Immunopathol 2018;204:28–39. doi: 10.1016/j.vetimm.2018.09.003 30596378
38. Porter RM, Lunny DP, Ogden PH, Morley SM, McLean WH, Evans A, et al. K15 expression implies lateral differentiation within stratified epithelial basal cells. Lab Invest 2000;80(11):1701–10. 11092530
39. De Berker D, Wojnarowska F, Sviland L, Westgate GE, Dawber RPR, Leigh IM. Keratin expression in the normal nail unit: Markers of regional differentiation. Brit J Dermatol 2000;142:89–96.
40. Daradka M, Pollitt CC. Epidermal cell proliferation in the equine hoof wall. Equine Veterinary Journal 2004;36:236–41. doi: 10.2746/0425164044877198 15147131
41. Linn SC, Mustonen AM, Silva KA, Kennedy VE, Sundberg BA, Bechtold LS, et al. Nail abnormalities identified in an ageing study of 30 inbred mouse strains. Exp Dermatol 2019;28:383–90. doi: 10.1111/exd.13759 30074290
42. Ehrlich F, Fischer H, Langbein L, Praetzel-Wunder S, Ebner B, Figlak K, et al. Differential evolution of the epidermal keratin cytoskeleton in terrestrial and aquatic mammals. Mol Biol Evol 2018.
43. Grosenbaugh DA, Hood DM. Keratin and associated proteins of the equine hoof wall. Am J Vet Res 1992;53(10):1859–63. 1280927
44. Wade CM, Giulotto E, Sigurdsson S, Zoli M, Gnerre S, Imsland F, et al. Genome sequence, comparative analysis, and population genetics of the domestic horse. Science 2009;326:865–7. doi: 10.1126/science.1178158 19892987
45. Zhang G, Li C, Li Q, Li B, Larkin DM, Lee C, et al. Comparative genomics reveals insights into avian genome evolution and adaptation. Science 2014;346(6215):1311–20. doi: 10.1126/science.1251385 25504712
46. Wu P, Ng CS, Yan J, Lai Y-C, Chen C-K, Lai Y-T, et al. Topographical mapping of α- and β-keratins on developing chicken skin integuments: Functional interaction and evolutionary perspectives. Proc Natl Acad Sci U S A 2015;E6770–E6779. doi: 10.1073/pnas.1520566112 26598683
47. Leise BS, Watts M, Roy S, Yilmaz S, Alder H, Belknap JK. Use of laser capture microdissection for the assessment of equine lamellar basal epithelial cell signalling in the early stages of laminitis. Equine Vet J 2015;47(4):478–88. doi: 10.1111/evj.12283 24750316
48. Cassimeris L, Engiles JB, Galantino-Homer H. Detection of endoplasmic reticulum stress and the unfolded protein response in naturally-occurring endocrinopathic equine laminitis. BMC Vet Res 2019;15(1):24. doi: 10.1186/s12917-018-1748-x 30630474
49. Faleiros RR, Nuovo GJ, Belknap JK. Calprotectin in myeloid and epithelial cells of laminae from horses with black walnut extract-induced laminitis. J Vet Intern Med 2009;23(1):174–81. doi: 10.1111/j.1939-1676.2008.0241.x 19175737
50. Strnad P, Paschke S, Jang KH, Ku NO. Keratins: markers and modulators of liver disease. Curr Opin Gastroenterol 2012;28(3):209–16. doi: 10.1097/MOG.0b013e3283525cb8 22450891
51. Karikoski NP, McGowan CM, Singer ER, Asplin KE, Tulamo R-M, Patterson-Kane JC. Pathology of natural cases of equine endocrinopathic laminitis associated with hyperinsulinemia. Vet Pathol 2014;Epub 17 Sep. pii: 0300985814549212.
52. Ku NO, Strnad P, Bantel H, Omary MB. Keratins: Biomarkers and modulators of apoptotic and necrotic cell death in the liver. Hepatology 2016;64(3):966–76. doi: 10.1002/hep.28493 26853542
53. Linder S, Olofsson MH, Herrmann R, Ulukaya E. Utilization of cytokeratin-based biomarkers for pharmacodynamic studies. Expert Rev Mol Diagn 2010;10(3):353–9. doi: 10.1586/erm.10.14 20370591
Článek vyšel v časopise
PLOS One
2019 Číslo 9
- Tisícileté topoly, mokří psi, stárnoucí kočky a ospalé octomilky – „jednohubky“ z výzkumu 2024/41
- Jaké jsou aktuální trendy v léčbě karcinomu slinivky?
- Může hubnutí souviset s vyšším rizikem nádorových onemocnění?
- Menstruační krev má značný diagnostický potenciál, mimo jiné u diabetu
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
Nejčtenější v tomto čísle
- Graviola (Annona muricata) attenuates behavioural alterations and testicular oxidative stress induced by streptozotocin in diabetic rats
- CH(II), a cerebroprotein hydrolysate, exhibits potential neuro-protective effect on Alzheimer’s disease
- Comparison between Aptima Assays (Hologic) and the Allplex STI Essential Assay (Seegene) for the diagnosis of Sexually transmitted infections
- Assessment of glucose-6-phosphate dehydrogenase activity using CareStart G6PD rapid diagnostic test and associated genetic variants in Plasmodium vivax malaria endemic setting in Mauritania
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy