How do seabirds modify their search behaviour when encountering fishing boats?
Autoři:
Alexandre Corbeau aff001; Julien Collet aff001; Melissa Fontenille aff001; Henri Weimerskirch aff001
Působiště autorů:
Centre d’Études Biologiques de Chizé, UMR7372 CNRS-La Rochelle Université, Villiers en Bois, France
aff001
Vyšlo v časopise:
PLoS ONE 14(9)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0222615
Souhrn
Seabirds are well known to be attracted by fishing boats to forage on offal and baits. We used recently developed loggers that record accurate GPS position and detect the presence of boats through their radar emissions to examine how albatrosses use Area Restricted Search (ARS) and if so, have specific ARS behaviours, when attending boats. As much as 78.5% of locations with a radar detection (contact with boat) during a trip occurred within ARS: 36.8% of all large-scale ARS (n = 212) and 14.7% of all small-scale ARS (n = 1476) were associated with the presence of a boat. During small-scale ARS, birds spent more time and had greater sinuosity during boat-associated ARS compared with other ARS that we considered natural. For, small-scale ARS associated with boats, those performed over shelves were longer in duration, had greater sinuosity, and birds spent more time sitting on water compared with oceanic ARS associated with boats. We also found that the proportion of small-scale ARS tend to be more frequently nested in larger-scale ARS was higher for birds associated with boats and that ARS behaviour differed between oceanic (tuna fisheries) and shelf-edge (mainly Patagonian toothfish fisheries) habitats. We suggest that, in seabird species attracted by boats, a significant amount of ARS behaviours are associated with boats, and that it is important to be able to separate ARS behaviours associated to boats from natural searching behaviours. Our study suggest that studying ARS characteristics should help attribute specific behaviours associated to the presence of boats and understand associated risks between fisheries.
Klíčová slova:
Animal behavior – Birds – Fisheries – Foraging – Predation – Boats – Radar – Seabirds
Zdroje
1. Stearns SC. A New View of Life-History Evolution. Oikos. 1980;35: 266. doi: 10.2307/3544434
2. Hill S, Burrows MT, Hughes RN. Increased turning per unit distance as an area-restricted search mechanism in a pause-travel predator, juvenile plaice, foraging for buried bivalves. J Fish Biol. 2000;56: 1497–1508. doi: 10.1111/j.1095-8649.2000.tb02160.x
3. Dopamine Hills T. and Glutamate Control Area-Restricted Search Behavior in Caenorhabditis elegans. J Neurosci. 2004;24: 1217–1225. doi: 10.1523/JNEUROSCI.1569-03.2004
4. Kareiva P, Odell G. Swarms of Predators Exhibit “Preytaxis” if Individual Predators Use Area-Restricted Search. Am Nat. 1987;130: 233–270.
5. Benhamou S. Efficiency of area-concentrated searching behaviour in a continuous patchy environment. J Theor Biol. 1992;159: 67–81. doi: 10.1016/S0022-5193(05)80768-4
6. Bennison A, Bearhop S, Bodey TW, Votier SC, Grecian WJ, Wakefield ED, et al. Search and foraging behaviors from movement data: A comparison of methods. Ecol Evol. 2018;8: 13–24. doi: 10.1002/ece3.3593 29321847
7. Hamer KC, Humphreys EM, Magalhães MC, Garthe S, Hennicke J, Peters G, et al. Fine-scale foraging behaviour of a medium-ranging marine predator. J Anim Ecol. 2009;78: 880–889. doi: 10.1111/j.1365-2656.2009.01549.x 19426254
8. Pacheco-Cobos L, Winterhalder B, Cuatianquiz-Lima C, Rosetti MF, Hudson R, Ross CT. Nahua mushroom gatherers use area-restricted search strategies that conform to marginal value theorem predictions. Proc Natl Acad Sci. 2019;116: 10339–10347. doi: 10.1073/pnas.1814476116 31061117
9. Weimerskirch H, Pinaud D, Pawlowski F, Bost C. Does Prey Capture Induce Area‐Restricted Search? A Fine‐Scale Study Using GPS in a Marine Predator, the Wandering Albatross. Am Nat. 2007;170: 734–743. doi: 10.1086/522059 17926295
10. Heerah K, Dias MP, Delord K, Oppel S, Barbraud C, Weimerskirch H, et al. Important areas and conservation sites for a community of globally threatened marine predators of the Southern Indian Ocean. Biol Conserv. 2019;234: 192–201. doi: 10.1016/j.biocon.2019.03.037
11. Lascelles BG, Taylor PR, Miller MGR, Dias MP, Oppel S, Torres L, et al. Applying global criteria to tracking data to define important areas for marine conservation. Visconti P, editor. Divers Distrib. 2016;22: 422–431. doi: 10.1111/ddi.12411
12. Bicknell AWJ, Oro D, Camphuysen KCJ, Votier SC. Potential consequences of discard reform for seabird communities. Blanchard J, editor. J Appl Ecol. 2013;50: 649–658. doi: 10.1111/1365-2664.12072
13. Gremillet D, Pichegru L, Kuntz G, Woakes AG, Wilkinson S, Crawford RJ., et al. A junk-food hypothesis for gannets feeding on fishery waste. Proc R Soc B Biol Sci. 2008;275: 1149–1156. doi: 10.1098/rspb.2007.1763 18270155
14. Votier SC, Furness RW, Bearhop S, Crane JE, Caldow RWG, Catry P, et al. Changes in fisheries discard rates and seabird communities. Nature. 2004;427: 727–730. doi: 10.1038/nature02315 14973483
15. Tasker M. The impacts of fishing on marine birds. ICES J Mar Sci. 2000;57: 531–547. doi: 10.1006/jmsc.2000.0714
16. Croxall JP, Butchart SHM, Lascelles B, Stattersfield AJ, Sullivan B, Symes A, et al. Seabird conservation status, threats and priority actions: a global assessment. Bird Conserv Int. 2012;22: 1–34. doi: 10.1017/S0959270912000020
17. Anderson O, Small C, Croxall J, Dunn E, Sullivan B, Yates O, et al. Global seabird bycatch in longline fisheries. Endanger Species Res. 2011;14: 91–106. doi: 10.3354/esr00347
18. Delord K, Gasco N, Weimerskirch H, Barbraud C, Micol T. Seabird mortality in the Patagonian toothfish longline fishery around Crozet and Kerguelen Islands, 2001–2003. Ccamlr Sci. 2005;12: 53–80.
19. Torres L, Sagar P, Thompson D, Phillips R. Scaling down the analysis of seabird-fishery interactions. Mar Ecol Prog Ser. 2013;473: 275–289. doi: 10.3354/meps10071
20. Torres L, Thompson D, Bearhop S, Votier S, Taylor G, Sagar P, et al. White-capped albatrosses alter fine-scale foraging behavior patterns when associated with fishing vessels. Mar Ecol Prog Ser. 2011;428: 289–301. doi: 10.3354/meps09068
21. Bodey TW, Jessopp MJ, Votier SC, Gerritsen HD, Cleasby IR, Hamer KC, et al. Seabird movement reveals the ecological footprint of fishing vessels. Curr Biol. 2014;24: R514–R515. doi: 10.1016/j.cub.2014.04.041 24892908
22. Weimerskirch H, Filippi DP, Collet J, Waugh SM, Patrick SC. Use of radar detectors to track attendance of albatrosses at fishing vessels: Seabird-Fishery Interactions. Conserv Biol. 2017; doi: 10.1111/cobi.12965 28598528
23. Weimerskirch H, Brothers N, Jouventin P. Population dynamics of wandering albatross Diomedea exulans and Amsterdam albatross D. amsterdamensis in the Indian Ocean and their relationships with long-line fisheries: conservation implications. Biol Conserv. 1997;79: 257–270.
24. Weimerskirch H, Pinaud D, Pawlowski F, Bost C. Does Prey Capture Induce Area‐Restricted Search? A Fine‐Scale Study Using GPS in a Marine Predator, the Wandering Albatross. Am Nat. 2007;170: 734–743. doi: 10.1086/522059 17926295
25. Phillips RA, Xavier JC, Croxall JP. Effects of satellite transmitters on albatrosses and petrels. The Auk. 2003;120: 1082–1090.
26. Weimerskirch H, Bonadonna F, Bailleul F, Mabille G, Dell’Omo G, Lipp H-P. GPS tracking of foraging albatrosses. Science. 2002;295: 1259–1259. doi: 10.1126/science.1068034 11847332
27. Pinaud D. Quantifying search effort of moving animals at several spatial scales using first-passage time analysis: effect of the structure of environment and tracking systems. J Appl Ecol. 2007;45: 91–99. doi: 10.1111/j.1365-2664.2007.01370.x
28. Fauchald P, Tveraa T. Using first-passage time in the analysis of area-restricted search and habitat selection. Ecology. 2003;84: 282–288.
29. Suryan RM, Sato F, Balogh GR, David Hyrenbach K, Sievert PR, Ozaki K. Foraging destinations and marine habitat use of short-tailed albatrosses: A multi-scale approach using first-passage time analysis. Deep Sea Res Part II Top Stud Oceanogr. 2006;53: 370–386. doi: 10.1016/j.dsr2.2006.01.012
30. Barraquand F, Benhamou S. ANIMAL MOVEMENTS IN HETEROGENEOUS LANDSCAPES: IDENTIFYING PROFITABLE PLACES AND HOMOGENEOUS MOVEMENT BOUTS. Ecology. 2008;89: 3336–3348. doi: 10.1890/08-0162.1 19137941
31. Weimerskirch H, P. Wilson R, Lys P. Activity pattern of foraging in the wandering albatross: a marine predator with two modes of prey searching. Mar Ecol Prog Ser. 1997; 245–254.
32. Bennison A, Bearhop S, Bodey TW, Votier SC, Grecian WJ, Wakefield ED, et al. Search and foraging behaviors from movement data: A comparison of methods. Ecol Evol. 2018;8: 13–24. doi: 10.1002/ece3.3593 29321847
33. Calenge C. The package “adehabitat” for the R software: A tool for the analysis of space and habitat use by animals. Ecol Model. 2006;197: 516–519. doi: 10.1016/j.ecolmodel.2006.03.017
34. Lavielle M. Detection of multiple changes in a sequence of dependent variables. Stoch Process Their Appl. 1999;83: 79–102.
35. Lavielle M. Using penalized contrasts for the change-point problem. Signal Process. 2005;85: 1501–1510. doi: 10.1016/j.sigpro.2005.01.012
36. Pante E, Simon-Bouhet B. marmap: A Package for Importing, Plotting and Analyzing Bathymetric and Topographic Data in R. Schumann GJ-P, editor. PLoS ONE. 2013;8: e73051. doi: 10.1371/journal.pone.0073051 24019892
37. Johnson PCD. Extension of Nakagawa & Schielzeth’s R 2 GLMM to random slopes models. O’Hara RB, editor. Methods Ecol Evol. 2014;5: 944–946. doi: 10.1111/2041-210X.12225 25810896
38. Collet J, Patrick S, Weimerskirch H. Albatrosses redirect flight towards vessels at the limit of their visual range. Mar Ecol Prog Ser. 2015;526: 199–205. doi: 10.3354/meps11233
39. Collet J, Patrick SC, Weimerskirch H. Behavioral responses to encounter of fishing boats in wandering albatrosses. Ecol Evol. 2017;7: 3335–3347. doi: 10.1002/ece3.2677 28515870
40. de Grissac S, Bartumeus F, Cox SL, Weimerskirch H. Early-life foraging: Behavioral responses of newly fledged albatrosses to environmental conditions. Ecol Evol. 2017;7: 6766–6778. doi: 10.1002/ece3.3210 28904758
41. Pereira JM, Paiva VH, Phillips RA, Xavier JC. The devil is in the detail: small-scale sexual segregation despite large-scale spatial overlap in the wandering albatross. Mar Biol. 2018;165: 55. doi: 10.1007/s00227-018-3316-0
42. Weimerskirch H, Cherel Y, Delord K, Jaeger A, Patrick SC, Riotte-Lambert L. Lifetime foraging patterns of the wandering albatross: Life on the move! J Exp Mar Biol Ecol. 2014;450: 68–78. doi: 10.1016/j.jembe.2013.10.021
43. Sabarros PS, Grémillet D, Demarcq H, Moseley C, Pichegru L, Mullers RHE, et al. Fine-scale recognition and use of mesoscale fronts by foraging Cape gannets in the Benguela upwelling region. Deep Sea Res Part II Top Stud Oceanogr. 2014;107: 77–84. doi: 10.1016/j.dsr2.2013.06.023
44. Brothers N. Albatross mortality and associated bait loss in the Japanese longline fishery in the Southern Ocean. Biol Conserv. 1991;55: 255–268. doi: 10.1016/0006-3207(91)90031-4
45. Rollinson DP, Wanless RM, Makhado AB, Crawford RJM. A review of seabird bycatch mitigation measures, including experimental work, within South Africa’s tuna longline fishery. 2016. doi: IOTC-2016-SC19-13 Rev_1
46. Trost SG, Zheng Y, Wong W-K. Machine learning for activity recognition: hip versus wrist data. Physiol Meas. 2014;35: 2183–2189. doi: 10.1088/0967-3334/35/11/2183 25340887
47. Joo R, Bertrand S, Tam J, Fablet R. Hidden Markov models: the best models for forager movements? PLoS One. 2013;8: e71246. doi: 10.1371/journal.pone.0071246 24058400
48. Langrock R, King R, Matthiopoulos J, Thomas L, Fortin D, Morales JM. Flexible and practical modeling of animal telemetry data: hidden Markov models and extensions. Ecology. 2012;93: 2336–2342. doi: 10.1890/11-2241.1 23236905
49. Weimerskirch H. Linking demographic processes and foraging ecology in wandering albatross-Conservation implications. Bouwhuis S, editor. J Anim Ecol. 2018;87: 945–955. doi: 10.1111/1365-2656.12817 29476544
Článek vyšel v časopise
PLOS One
2019 Číslo 9
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Je libo čepici místo mozkového implantátu?
- Pomůže v budoucnu s triáží na pohotovostech umělá inteligence?
- AI může chirurgům poskytnout cenná data i zpětnou vazbu v reálném čase
- Nová metoda odlišení nádorové tkáně může zpřesnit resekci glioblastomů
Nejčtenější v tomto čísle
- Graviola (Annona muricata) attenuates behavioural alterations and testicular oxidative stress induced by streptozotocin in diabetic rats
- CH(II), a cerebroprotein hydrolysate, exhibits potential neuro-protective effect on Alzheimer’s disease
- Comparison between Aptima Assays (Hologic) and the Allplex STI Essential Assay (Seegene) for the diagnosis of Sexually transmitted infections
- Assessment of glucose-6-phosphate dehydrogenase activity using CareStart G6PD rapid diagnostic test and associated genetic variants in Plasmodium vivax malaria endemic setting in Mauritania
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy