#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Myotendinous asymmetries derived from the prolonged practice of badminton in professional players


Autoři: Alfredo Bravo-Sánchez aff001;  Pablo Abián aff002;  Fernando Jiménez aff001;  Javier Abián-Vicén aff001
Působiště autorů: Performance and Sport Rehabilitation Laboratory, Faculty of Sport Sciences, University of Castilla-La Mancha, Toledo, Spain aff001;  Faculty of Humanities and Social Sciences, Comillas Pontifical University, Madrid, Spain aff002
Vyšlo v časopise: PLoS ONE 14(9)
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pone.0222190

Souhrn

Background

The continued practice of a sport linked to the unilateral predominance of the dominant side can provoke chronic asymmetric adaptations in the myotendinous structure and mechanical properties. Objectives: The main purpose was to determine whether asymmetry between the preferred and non-preferred lower limb is present in the lower limb tendon structure, muscle architecture and stiffness values of professional badminton players.

Methods

Sixteen male professional badminton players (age = 24.1 ± 6.7 years; body height = 177.90 ± 7.53 cm) participated in this study. The muscle architecture of the vastus lateralis (VL), medial gastrocnemius (MG) and lateral gastrocnemius (LG) and the structure of patellar and Achilles tendons were measured in the dominant and non-dominant lower limb with ultrasonography. Stiffness was also measured at the same points with a hand-held MyotonPro. Significant differences between the dominant and non-dominant lower limb were determined using Student’s t test for related samples.

Results

Bilateral differences were observed for thickness, width and cross-sectional area (CSA) in both tendons showing higher values for the dominant side: patellar tendon CSA (2.02 ± 0.64 vs. 1.51 ± 0.42 cm2; p < 0.05) and Achilles tendon CSA (1.12 ± 0.18 vs. 0.92 ± 0.28 cm2; p < 0.05). No significant differences were observed in muscle architecture and myotonic variables between the dominant and non-dominant lower limb.

Conclusions

The prolonged practice of badminton caused asymmetries in the CSA, width and thickness of the patellar and Achilles tendon between the dominant and non-dominant lower limbs. No bilateral differences were found in the muscle architecture of VL, MG and LG or in the stiffness of any muscle or tendon analyzed.

Klíčová slova:

Biology and life sciences – Anatomy – Biological tissue – Connective tissue – Tendons – Musculoskeletal system – Body limbs – Biochemistry – Lipids – Fats – Psychology – Behavior – Recreation – Sports – Sports science – Sports and exercise medicine – Medicine and health sciences – Research and analysis methods – Bioassays and physiological analysis – Muscle analysis – Social sciences – Physical sciences – Materials science – Material properties – Mechanical properties – Stiffness


Zdroje

1. Jorgensen U, Winge S. Epidemiology of badminton injuries. Int J Sports Med. 1987;8(6):379–82. doi: 10.1055/s-2008-1025689 3429081.

2. Miyake E, Yatsunami M, Kurabayashi J, Teruya K, Sekine Y, Endo T, et al. A Prospective Epidemiological Study of Injuries in Japanese National Tournament-Level Badminton Players From Junior High School to University. Asian J Sports Med. 2016;7(1):e29637. doi: 10.5812/asjsm.29637 27217933; PubMed Central PMCID: PMC4870827.

3. Valderrabano V, Nigg BM, Hintermann B, Goepfert B, Dick W, Frank CB, et al. Muscular lower leg asymmetry in middle-aged people. Foot Ankle Int. 2007;28(2):242–9. doi: 10.3113/FAI.2007.0242 17296147.

4. Murach K, Greever C, Luden ND. Skeletal muscle architectural adaptations to marathon run training. Appl Physiol Nutr Metab. 2015;40(1):99–102. doi: 10.1139/apnm-2014-0287 25494870.

5. Fahlstrom M, Lorentzon R, Alfredson H. Painful conditions in the Achilles tendon region in elite badminton players. Am J Sports Med. 2002;30(1):51–4. doi: 10.1177/03635465020300012201 11798996.

6. Couppe C, Kongsgaard M, Aagaard P, Vinther A, Boesen M, Kjaer M, et al. Differences in tendon properties in elite badminton players with or without patellar tendinopathy. Scand J Med Sci Sports. 2013;23(2):e89–95. doi: 10.1111/sms.12023 23227947.

7. Yung PS, Chan RH, Wong FC, Cheuk PW, Fong DT. Epidemiology of injuries in Hong Kong elite badminton athletes. Res Sports Med. 2007;15(2):133–46. doi: 10.1080/15438620701405263 17578753.

8. Boesen AP, Boesen MI, Koenig MJ, Bliddal H, Torp-Pedersen S, Langberg H. Evidence of accumulated stress in Achilles and anterior knee tendons in elite badminton players. Knee Surg Sports Traumatol Arthrosc. 2011;19(1):30–7. Epub 2010/07/24. doi: 10.1007/s00167-010-1208-z 20652535.

9. Boesen AP, Boesen MI, Torp-Pedersen S, Christensen R, Boesen L, Holmich P, et al. Associations between abnormal ultrasound color Doppler measures and tendon pain symptoms in badminton players during a season: a prospective cohort study. Am J Sports Med. 2012;40(3):548–55. doi: 10.1177/0363546511435478 22328709.

10. Fahlstrom M, Bjornstig U, Lorentzon R. Acute Achilles tendon rupture in badminton players. Am J Sports Med. 1998;26(3):467–70. doi: 10.1177/03635465980260032201 9617415.

11. Kongsgaard M, Aagaard P, Kjaer M, Magnusson SP. Structural Achilles tendon properties in athletes subjected to different exercise modes and in Achilles tendon rupture patients. J Appl Physiol (1985). 2005;99(5):1965–71. Epub 2005/08/06. doi: 10.1152/japplphysiol.00384.2005 16081623.

12. Kongsgaard M, Reitelseder S, Pedersen TG, Holm L, Aagaard P, Kjaer M, et al. Region specific patellar tendon hypertrophy in humans following resistance training. Acta Physiol (Oxf). 2007;191(2):111–21. Epub 2007/05/26. doi: 10.1111/j.1748-1716.2007.01714.x 17524067.

13. Hansen P, Aagaard P, Kjaer M, Larsson B, Magnusson SP. Effect of habitual running on human Achilles tendon load-deformation properties and cross-sectional area. J Appl Physiol (1985). 2003;95(6):2375–80. Epub 2003/08/26. doi: 10.1152/japplphysiol.00503.2003 12937029.

14. Kubo K, Yata H, Kanehisa H, Fukunaga T. Effects of isometric squat training on the tendon stiffness and jump performance. Eur J Appl Physiol. 2006;96(3):305–14. Epub 2005/12/06. doi: 10.1007/s00421-005-0087-3 16328192.

15. Reeves ND, Maganaris CN, Narici MV. Effect of strength training on human patella tendon mechanical properties of older individuals. J Physiol. 2003;548(Pt 3):971–81. Epub 2003/03/11. doi: 10.1113/jphysiol.2002.035576 12626673; PubMed Central PMCID: PMC2342903.

16. Reeves ND, Narici MV, Maganaris CN. Strength training alters the viscoelastic properties of tendons in elderly humans. Muscle Nerve. 2003;28(1):74–81. Epub 2003/06/18. doi: 10.1002/mus.10392 12811776.

17. Miller BF, Olesen JL, Hansen M, Dossing S, Crameri RM, Welling RJ, et al. Coordinated collagen and muscle protein synthesis in human patella tendon and quadriceps muscle after exercise. J Physiol. 2005;567(Pt 3):1021–33. doi: 10.1113/jphysiol.2005.093690 16002437; PubMed Central PMCID: PMC1474228.

18. Bojsen-Moller J, Kalliokoski KK, Seppanen M, Kjaer M, Magnusson SP. Low-intensity tensile loading increases intratendinous glucose uptake in the Achilles tendon. J Appl Physiol (1985). 2006;101(1):196–201. doi: 10.1152/japplphysiol.00004.2006 16565354.

19. Seynnes OR, Erskine RM, Maganaris CN, Longo S, Simoneau EM, Grosset JF, et al. Training-induced changes in structural and mechanical properties of the patellar tendon are related to muscle hypertrophy but not to strength gains. J Appl Physiol (1985). 2009;107(2):523–30. doi: 10.1152/japplphysiol.00213.2009 19478195.

20. Couppe C, Kongsgaard M, Aagaard P, Hansen P, Bojsen-Moller J, Kjaer M, et al. Habitual loading results in tendon hypertrophy and increased stiffness of the human patellar tendon. J Appl Physiol (1985). 2008;105(3):805–10. doi: 10.1152/japplphysiol.90361.2008 18556433.

21. Fu L, Ren F, Baker JS. Comparison of Joint Loading in Badminton Lunging between Professional and Amateur Badminton Players. Appl Bionics Biomech. 2017;2017:5397656. doi: 10.1155/2017/5397656 28694684; PubMed Central PMCID: PMC5485309.

22. Malliaras P, Voss C, Garau G, Richards P, Maffulli N. Achilles tendon shape and echogenicity on ultrasound among active badminton players. Scand J Med Sci Sports. 2012;22(2):149–55. Epub 2010/06/22. doi: 10.1111/j.1600-0838.2010.01156.x 20561268.

23. Bolsterlee B, Veeger HE, van der Helm FC, Gandevia SC, Herbert RD. Comparison of measurements of medial gastrocnemius architectural parameters from ultrasound and diffusion tensor images. J Biomech. 2015;48(6):1133–40. doi: 10.1016/j.jbiomech.2015.01.012 25682540.

24. Gans C. Fiber architecture and muscle function. Exerc Sport Sci Rev. 1982;10:160–207. 6749514.

25. Kearns CF, Isokawa M, Abe T. Architectural characteristics of dominant leg muscles in junior soccer players. Eur J Appl Physiol. 2001;85(3–4):240–3. doi: 10.1007/s004210100468 11560076.

26. Rahnama N, Lees A, Bambaecichi E. Comparison of muscle strength and flexibility between the preferred and non-preferred leg in English soccer players. Ergonomics. 2005;48(11–14):1568–75. doi: 10.1080/00140130500101585 16338722.

27. Sannicandro I, Piccinno A, Rosa RA, De Pascalis S. Functional asymmetry in the lower limb professional soccer players. British Journal of Sports Medicine. 2011;45(4):370–. doi: 10.1136/bjsm.2011.084038.170

28. Luk HY, Winter C, O'Neill E, Thompson BA. Comparison of muscle strength imbalance in powerlifters and jumpers. J Strength Cond Res. 2014;28(1):23–7. doi: 10.1519/JSC.0b013e318295d311 23591945.

29. Blazevich AJ, Cannavan D, Coleman DR, Horne S. Influence of concentric and eccentric resistance training on architectural adaptation in human quadriceps muscles. J Appl Physiol (1985). 2007;103(5):1565–75. doi: 10.1152/japplphysiol.00578.2007 17717119.

30. Reeves ND, Maganaris CN, Longo S, Narici MV. Differential adaptations to eccentric versus conventional resistance training in older humans. Exp Physiol. 2009;94(7):825–33. doi: 10.1113/expphysiol.2009.046599 19395657.

31. Baroni BM, Geremia JM, Rodrigues R, De Azevedo Franke R, Karamanidis K, Vaz MA. Muscle architecture adaptations to knee extensor eccentric training: rectus femoris vs. vastus lateralis. Muscle Nerve. 2013;48(4):498–506. Epub 2013/07/16. doi: 10.1002/mus.23785 23852989.

32. Abe T, Kumagai K, Brechue WF. Fascicle length of leg muscles is greater in sprinters than distance runners. Med Sci Sports Exerc. 2000;32(6):1125–9. doi: 10.1097/00005768-200006000-00014 10862540.

33. Brughelli M, Cronin J. A review of research on the mechanical stiffness in running and jumping: methodology and implications. Scand J Med Sci Sports. 2008;18(4):417–26. doi: 10.1111/j.1600-0838.2008.00769.x 18282225.

34. Bohm S, Mersmann F, Marzilger R, Schroll A, Arampatzis A. Asymmetry of Achilles tendon mechanical and morphological properties between both legs. Scand J Med Sci Sports. 2015;25(1):e124–32. doi: 10.1111/sms.12242 24798645.

35. Sohirad S, Wilson D, Waugh C, Finnamore E, Scott A. Feasibility of using a hand-held device to characterize tendon tissue biomechanics. Plos One. 2017;12(9). ARTN e0184463 doi: 10.1371/journal.pone.0184463 WOS:000409391200106. 28877266

36. Pozarowszczyk B, Pawlaczyk W, Smoter M, Zarzycki A, Mroczek D, Kumorek M, et al. Effects of Karate Fights on Achilles Tendon Stiffness Measured by Myotonometry. J Hum Kinet. 2017;56:93–7. doi: 10.1515/hukin-2017-0026 28469747; PubMed Central PMCID: PMC5384056.

37. Kalkhoven JT, Watsford ML. The relationship between mechanical stiffness and athletic performance markers in sub-elite footballers. J Sports Sci. 2018;36(9):1022–9. Epub 2017/07/13. doi: 10.1080/02640414.2017.1349921 28697691.

38. Suresh K, Chandrashekara S. Sample size estimation and power analysis for clinical research studies. J Hum Reprod Sci. 2012;5(1):7–13. Epub 2012/08/08. doi: 10.4103/0974-1208.97779 22870008; PubMed Central PMCID: PMC3409926.

39. Fukutani A, Kurihara T. Comparison of the muscle fascicle length between resistance-trained and untrained individuals: cross-sectional observation. Springerplus. 2015;4:341. doi: 10.1186/s40064-015-1133-1 26185743; PubMed Central PMCID: PMC4499036.

40. Kumagai K, Abe T, Brechue WF, Ryushi T, Takano S, Mizuno M. Sprint performance is related to muscle fascicle length in male 100-m sprinters. J Appl Physiol (1985). 2000;88(3):811–6. doi: 10.1152/jappl.2000.88.3.811 10710372.

41. Rasmussen OS. Sonography of tendons. Scand J Med Sci Sports. 2000;10(6):360–4. 11085564.

42. Aird L, Samuel D, Stokes M. Quadriceps muscle tone, elasticity and stiffness in older males: reliability and symmetry using the MyotonPRO. Arch Gerontol Geriatr. 2012;55(2):e31–9. Epub 2012/04/17. doi: 10.1016/j.archger.2012.03.005 22503549.

43. Gavronski G, Veraksits A, Vasar E, Maaroos J. Evaluation of viscoelastic parameters of the skeletal muscles in junior triathletes. Physiol Meas. 2007;28(6):625–37. doi: 10.1088/0967-3334/28/6/002 17664617.

44. Cohen J. Statistical power analysis for the behavioral sciences. Hillsdale, NJ: Lawrence Erlbaum Associates; 1988.

45. Niemelainen R, Briand MM, Battie MC. Substantial asymmetry in paraspinal muscle cross-sectional area in healthy adults questions its value as a marker of low back pain and pathology. Spine (Phila Pa 1976). 2011;36(25):2152–7. doi: 10.1097/BRS.0b013e318204b05a 21343855.

46. Finni T, Komi PV, Lepola V. In vivo human triceps surae and quadriceps femoris muscle function in a squat jump and counter movement jump. Eur J Appl Physiol. 2000;83(4–5):416–26. doi: 10.1007/s004210000289 11138584.

47. Magnusson SP, Kjaer M. Region-specific differences in Achilles tendon cross-sectional area in runners and non-runners. Eur J Appl Physiol. 2003;90(5–6):549–53. doi: 10.1007/s00421-003-0865-8 12905044.

48. Sjostrom M, Lexell J, Eriksson A, Taylor CC. Evidence of fibre hyperplasia in human skeletal muscles from healthy young men? A left-right comparison of the fibre number in whole anterior tibialis muscles. Eur J Appl Physiol Occup Physiol. 1991;62(5):301–4. doi: 10.1007/bf00634963 1874233.

49. Timmins RG, Ruddy JD, Presland J, Maniar N, Shield AJ, Williams MD, et al. Architectural Changes of the Biceps Femoris Long Head after Concentric or Eccentric Training. Med Sci Sports Exerc. 2016;48(3):499–508. doi: 10.1249/MSS.0000000000000795 26460634.

50. Vernillo G, Pisoni C, Sconfienza LM, Thiebat G, Longo S. Changes in Muscle Architecture of Vastus Lateralis Muscle After an Alpine Snowboarding Race. J Strength Cond Res. 2017;31(1):254–9. doi: 10.1519/JSC.0000000000001469 PubMed PMID: 27135473.

51. Aeles J, Lenchant S, Vanlommel L, Vanwanseele B. Bilateral differences in muscle fascicle architecture are not related to the preferred leg in jumping athletes. Eur J Appl Physiol. 2017;117(7):1453–61. doi: 10.1007/s00421-017-3638-5 28488136.

52. Ruiz-Cardenas JD, Rodriguez-Juan JJ, Rios-Diaz J. Relationship between jumping abilities and skeletal muscle architecture of lower limbs in humans: Systematic review and meta-analysis. Hum Mov Sci. 2018;58:10–20. doi: 10.1016/j.humov.2018.01.005 29334674.

53. Vieira A, Blazevich AJ, Frade de Sousa N, Celes R, Alex S, Tufano JJ, et al. Acute changes in muscle thickness and pennation angle in response to work-matched concentric and eccentric isokinetic exercise. Appl Physiol Nutr Metab. 2018. doi: 10.1139/apnm-2018-0055 29707959.

54. Csapo R, Alegre LM, Baron R. Time kinetics of acute changes in muscle architecture in response to resistance exercise. J Sci Med Sport. 2011;14(3):270–4. doi: 10.1016/j.jsams.2011.02.003 21411367.

55. Finnamore E, Waugh C, Solomons L, Ryan M, West C, Scott A. Transverse tendon stiffness is reduced in people with Achilles tendinopathy: A cross-sectional study. Plos One. 2019;14(2). ARTN e0211863 doi: 10.1371/journal.pone.0211863 WOS:000459307000043. 30785895

56. Frohlich-Zwahlen AK, Casartelli NC, Item-Glatthorn JF, Maffiuletti NA. Validity of resting myotonometric assessment of lower extremity muscles in chronic stroke patients with limited hypertonia: a preliminary study. J Electromyogr Kinesiol. 2014;24(5):762–9. Epub 2014/07/16. doi: 10.1016/j.jelekin.2014.06.007 25023163.

57. Agyapong-Badu S, Warner M, Samuel D, Stokes M. Measurement of ageing effects on muscle tone and mechanical properties of rectus femoris and biceps brachii in healthy males and females using a novel hand-held myometric device. Arch Gerontol Geriatr. 2016;62:59–67. Epub 2015/10/20. doi: 10.1016/j.archger.2015.09.011 26476868.

58. Kelly JP, Koppenhaver SL, Michener LA, Proulx L, Bisagni F, Cleland JA. Characterization of tissue stiffness of the infraspinatus, erector spinae, and gastrocnemius muscle using ultrasound shear wave elastography and superficial mechanical deformation. J Electromyogr Kinesiol. 2018;38:73–80. Epub 2017/11/28. doi: 10.1016/j.jelekin.2017.11.001 29175615.

59. Feng YN, Li YP, Liu CL, Zhang ZJ. Assessing the elastic properties of skeletal muscle and tendon using shearwave ultrasound elastography and MyotonPRO. Sci Rep. 2018;8(1):17064. Epub 2018/11/22. doi: 10.1038/s41598-018-34719-7 30459432; PubMed Central PMCID: PMC6244233.


Článek vyšel v časopise

PLOS One


2019 Číslo 9
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

Svět praktické medicíny 3/2024 (znalostní test z časopisu)
nový kurz

Kardiologické projevy hypereozinofilií
Autoři: prof. MUDr. Petr Němec, Ph.D.

Střevní příprava před kolonoskopií
Autoři: MUDr. Klára Kmochová, Ph.D.

Aktuální možnosti diagnostiky a léčby litiáz
Autoři: MUDr. Tomáš Ürge, PhD.

Závislosti moderní doby – digitální závislosti a hypnotika
Autoři: MUDr. Vladimír Kmoch

Všechny kurzy
Kurzy Podcasty Doporučená témata Časopisy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#