#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Combining fish and environmental PCR for diagnostics of diseased laboratory zebrafish in recirculating systems


Autoři: Manuel Miller aff001;  Sibylle Sabrautzki aff001;  Andreas Beyerlein aff002;  Markus Brielmeier aff001
Působiště autorů: Research Unit Comparative Medicine, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany aff001;  Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany aff002
Vyšlo v časopise: PLoS ONE 14(9)
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pone.0222360

Souhrn

Precise knowledge of the health status of experimental fish is crucial to obtain high scientific and ethical standards in biomedical research. In addition to the use of sentinel fish, the examination of diseased fish is a fundamental part of all health monitoring concepts. PCR assays offer excellent sensitivity and the ability to test a broad variety of pathogenic agents in different sample types. Recently, it was shown that analysis of environmental samples such as water, sludge or detritus from static tanks can complement PCR analysis of fish and is actually more reliable for certain pathogens. In our study, we investigated whether the analysis of filtered water mixed with detritus of tanks including fish showing clinical signs of illness is suitable to complement health monitoring programs in recirculating systems. The obtained data indicate that pathogens such as Pseudoloma neurophilia or Myxidium streisingeri were exclusively or mainly found in fish, while mycobacteria were predominantly present in environmental samples. A combination of both sample types seems to be required for the detection of a broad range of infectious agents in zebrafish colonies using real-time PCR technology.

Klíčová slova:

Biology and life sciences – Organisms – Eukaryota – Animals – Vertebrates – Fish – Osteichthyes – Bacteria – Actinobacteria – Mycobacteria – Microbiology – Medical microbiology – Microbial pathogens – Bacterial pathogens – Molecular biology – Molecular biology techniques – Artificial gene amplification and extension – Polymerase chain reaction – Zoology – Fish biology – Fish physiology – Animal physiology – Vertebrate physiology – Medicine and health sciences – Pathology and laboratory medicine – Pathogens – Parasitic diseases – Nematode infections – Research and analysis methods – Animal studies – Experimental organism systems – Model organisms – Zebrafish – Animal models


Zdroje

1. Baker DG. Natural pathogens of laboratory mice, rats, and rabbits and their effects on research. Clin Microbiol Rev. 1998; 11(2):231–66. 9564563

2. Kent ML, Harper C, Wolf JC. Documented and potential research impacts of subclinical diseases in zebrafish. ILAR journal. 2012; 53(2):126–34. doi: 10.1093/ilar.53.2.126 23382344

3. Collymore C, Crim MJ, Lieggi C. Recommendations for Health Monitoring and Reporting for Zebrafish Research Facilities. Zebrafish. 2016; 13 Suppl 1(Suppl 1):S138–48. doi: 10.1089/zeb.2015.1210 26991393

4. Whipps CM, Lieggi C, Wagner R. Mycobacteriosis in zebrafish colonies. ILAR journal. 2012; 53(2):95–105. doi: 10.1093/ilar.53.2.95 23382341

5. Mason T, Snell K, Mittge E, Melancon E, Montgomery R, McFadden M, et al. Strategies to Mitigate a Mycobacterium marinum Outbreak in a Zebrafish Research Facility. Zebrafish. 2016; 13 Suppl 1(Suppl 1):S77–S87. doi: 10.1089/zeb.2015.1218 27351618

6. Kent ML, Bishop-Stewart JK, Matthews JL, Spitsbergen JM. Pseudocapillaria tomentosa, a nematode pathogen, and associated neoplasms of zebrafish (Danio rerio) kept in research colonies. Comp Med. 2002; 52(4):354–8. 12211280

7. Spagnoli S, Sanders J, Kent ML. The common neural parasite Pseudoloma neurophilia causes altered shoaling behavior in adult laboratory zebrafish (Danio rerio) and its implications for neurobehavioral research. J Fish Dis. 2017; 40(3): 443–446. doi: 10.1111/jfd.12512 27396581

8. Hashish E, Merwad A, Elgaml S, Amer A, Kamal H, Elsadek A, et al. Mycobacterium marinum infection in fish and man: epidemiology, pathophysiology and management; a review. Vet Q. 2018; 38(1):35–46. doi: 10.1080/01652176.2018.1447171 29493404

9. Aubry A, Chosidow O, Caumes E, Robert J, Cambau E. Sixty-three Cases of Mycobacterium marinum Infection: Clinical Features, Treatment, and Antibiotic Susceptibility of Causative Isolates. Archives of Internal Medicine. 2002; 162(15):1746–52. doi: 10.1001/archinte.162.15.1746 12153378

10. Osborne N, Paull G, Grierson A, Dunford K, Busch-Nentwich EM, Sneddon LU, et al. Report of a Meeting on Contemporary Topics in Zebrafish Husbandry and Care. Zebrafish. 2016; 13(6):584–9. doi: 10.1089/zeb.2016.1324 27537782

11. Mocho JP. Three-Dimensional Screen: A Comprehensive Approach to the Health Monitoring of Zebrafish. Zebrafish. 2016; 13 Suppl 1:S132–7. doi: 10.1089/zeb.2015.1200 27182750

12. http://www.felasa.eu/working-groups/working-groups-present/felasa-aalas-working-group-on-health-monitoring-for-fish-in-research/ (28.05.2019).

13. Murray KN, Varga ZM, Kent ML. Biosecurity and Health Monitoring at the Zebrafish International Resource Center. Zebrafish. 2016; 13 Suppl 1:S30–8. doi: 10.1089/zeb.2015.1206 27031282

14. Compton SR, Homberger FR, Paturzo FX, Clark JM. Efficacy of three microbiological monitoring methods in a ventilated cage rack. Comp Med. 2004; 54(4):382–92. 15357318

15. Bauer BA, Besch-Williford C, Livingston RS, Crim MJ, Riley LK, Myles MH. Influence of Rack Design and Disease Prevalence on Detection of Rodent Pathogens in Exhaust Debris Samples from Individually Ventilated Caging Systems. Journal of the American Association for Laboratory Animal Science. 2016; 55(6):782–8. 27931317

16. Gerwin PM, Ricart Arbona RJ, Riedel ER, Henderson KS, Lipman NS. PCR Testing of IVC Filter Tops as a Method for Detecting Murine Pinworms and Fur Mites. J Am Assoc Lab Anim Sci. 2017; 56(6):752–61. 29256370

17. Miller M, Brielmeier M. Environmental samples make soiled bedding sentinels dispensable for hygienic monitoring of IVC-reared mouse colonies. Lab Anim. 2018; 52(3):233–9. doi: 10.1177/0023677217739329 29145766

18. Miller M, Ritter B, Zorn J, Brielmeier M. Exhaust Air Dust Monitoring is Superior to Soiled Bedding Sentinels for the Detection of Pasteurella pneumotropica in Individually Ventilated Cage Systems. J Am Assoc Lab Anim Sci. 2016; 55(6):775–81. 27931316

19. Zorn J, Ritter B, Miller M, Kraus M, Northrup E, Brielmeier M. Murine norovirus detection in the exhaust air of IVCs is more sensitive than serological analysis of soiled bedding sentinels. Lab Anim. 2017; 51(3):301–10. doi: 10.1177/0023677216661586 27440411

20. Miller M, Ritter B, Zorn J, Brielmeier M. Exhaust air particle PCR detects helicobacter hepaticus infections at low prevalence. J Veterinar Sci Technolo. 2016; 7(4).

21. Crim MJ, Lawrence C, Livingston RS, Rakitin A, Hurley SJ, Riley LK. Comparison of Antemortem and Environmental Samples for Zebrafish Health Monitoring and Quarantine. J Am Assoc Lab Anim Sci. 2017; 56(4):412–24. 28724491

22. Mocho J-P, Martin DJ, Millington ME, Saavedra Torres Y. Environmental Screening of Aeromonas hydrophila, Mycobacterium spp., and Pseudocapillaria tomentosa in Zebrafish Systems. Journal of visualized experiments: JoVE. 2017; (130):55306. doi: 10.3791/55306 29286459

23. Whipps CM, Kent ML. Polymerase chain reaction detection of Pseudoloma neurophilia, a common microsporidian of zebrafish (Danio rerio) reared in research laboratories. J Am Assoc Lab Anim Sci. 2006; 45(1):36–9. 16539333

24. Mähler M, Berard M, Feinstein R, Gallagher A, Illgen-Wilcke B, Pritchett-Corning K, et al. FELASA recommendations for the health monitoring of mouse, rat, hamster, guinea pig and rabbit colonies in breeding and experimental units. Lab Anim. 2014; 48(3):178–92. doi: 10.1177/0023677213516312 24496575

25. Murray KN, Peterson TS. Pathology in practice. P tomentosa infection in zebrafish. Journal of the American Veterinary Medical Association. 2015; 246(2):201–3. doi: 10.2460/javma.246.2.201 25554935

26. Whipps CM, Dougan ST, Kent ML. Mycobacterium haemophilum infections of zebrafish (Danio rerio) in research facilities. FEMS Microbiol Lett. 2007; 270(1):21–6. doi: 10.1111/j.1574-6968.2007.00671.x 17326751

27. Whipps CM, Murray KN, Kent ML. Occurrence of a myxozoan parasite Myxidium streisingeri n. sp. in laboratory zebrafish Danio rerio. J Parasitol. 2015; 101(1):86–90. doi: 10.1645/14-613.1 25277837

28. Altan E, Kubiski SV, Boros A, Reuter G, Sadeghi M, Deng X, et al. A Highly Divergent Picornavirus Infecting the Gut Epithelia of Zebrafish (Danio rerio) in Research Institutions Worldwide. Zebrafish. 2019. doi: 10.1089/zeb.2018.1710 30939077


Článek vyšel v časopise

PLOS One


2019 Číslo 9
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

plice
INSIGHTS from European Respiratory Congress
nový kurz

Současné pohledy na riziko v parodontologii
Autoři: MUDr. Ladislav Korábek, CSc., MBA

Svět praktické medicíny 3/2024 (znalostní test z časopisu)

Kardiologické projevy hypereozinofilií
Autoři: prof. MUDr. Petr Němec, Ph.D.

Střevní příprava před kolonoskopií
Autoři: MUDr. Klára Kmochová, Ph.D.

Všechny kurzy
Kurzy Podcasty Doporučená témata Časopisy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#