Therapeutic efficacy of neuregulin 1-expressing human adipose-derived mesenchymal stem cells for ischemic stroke
Autoři:
Sun Ryu aff001; Jae-Min Lee aff001; Cheong A. Bae aff001; Chae-Eun Moon aff001; Kyung-Ok Cho aff001
Působiště autorů:
Department of Pharmacology, College of Medicine, The Catholic University of Korea, Seoul, South Korea
aff001; Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul, South Korea
aff002; Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea
aff003; Institute of Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul, South Korea
aff004
Vyšlo v časopise:
PLoS ONE 14(9)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0222587
Souhrn
Adipose-derived mesenchymal stem cells (AdMSCs) have been reported to ameliorate neurological deficits after acute ischemic stroke. As neuregulin 1 (NRG1, or heregulin 1), a growth factor with versatile functions in the central nervous system, has demonstrated protective effects against ischemic brain injuries, we have generated NRG1-overexpressing AdMSCs in order to investigate whether NRG1-AdMSCs could enhance therapeutic benefits of AdMSCs in ischemic stroke. After AdMSCs were infected with adenoviral NRG1, increased NRG1 secretion in NRG1-AdMSCs was confirmed with ELISA. At 1 d after ischemic stroke that was induced by the occlusion of middle cerebral artery (MCAo) for 60 min in Sprague Dawley (SD) rats, adenoviral NRG1, AdMSCs, NRG1-AdMSCs, or PBS were injected into the striatum and serial neurologic examinations were performed. Administration of NRG1-AdMSCs resulted in significant improvement of functional outcome following stroke compared to AdMSCs- or adenoviral NRG1-treated group, in addition to the reduction in the infarct size evaluated by hematoxylin and eosin staining. When NRG1 expression in the brain was examined by double immunofluorescence to human nuclei (HuNu)/NRG1 and ELISA, NRG1-AdMSCs demonstrated marked increase in NRG1 expression. Moreover, western blot analysis further showed that transplantation of NRG1-AdMSCs significantly increased both endogenous and adenoviral NRG1 expression compared to AdMSCs-treated group. To elucidate molecular mechanisms, NRG1-associated downstream molecules were evaluated by western blot analysis. Expression of ErbB4, a receptor for NRG1, was markedly increased by NRG1-AdMSCs administration, in addition to pMAPK and pAkt, crucial molecules of NRG1-ErbB4 signaling. Taken together, our data suggest that NRG1-AdMSCs can provide excellent therapeutic potential in ischemic stroke by activating NRG1-ErbB4 signaling network.
Klíčová slova:
Brain damage – Cerebral ischemia – Enzyme-linked immunoassays – Ischemic stroke – MAPK signaling cascades – Mesenchymal stem cells – Stem cell therapy – Adenoviruses
Zdroje
1. Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Blaha MJ, et al. Executive summary: heart disease and stroke statistics—2014 update: a report from the American Heart Association. Circulation. 2014;129(3):399–410. Epub 2014/01/22. doi: 10.1161/01.cir.0000442015.53336.12 24446411
2. Hacke W, Kaste M, Bluhmki E, Brozman M, Davalos A, Guidetti D, et al. Thrombolysis with alteplase 3 to 4.5 hours after acute ischemic stroke. N Engl J Med. 2008;359(13):1317–29. doi: 10.1056/NEJMoa0804656 18815396
3. Gutierrez-Fernandez M, Otero-Ortega L, Ramos-Cejudo J, Rodriguez-Frutos B, Fuentes B, Diez-Tejedor E. Adipose tissue-derived mesenchymal stem cells as a strategy to improve recovery after stroke. Expert Opin Biol Ther. 2015;15(6):873–81. doi: 10.1517/14712598.2015.1040386 25959243
4. Napoli E, Borlongan CV. Recent Advances in Stem Cell-Based Therapeutics for Stroke. Translational stroke research. 2016. Epub 2016/08/16. doi: 10.1007/s12975-016-0490-6 27515852
5. Castillo M, Liu K, Bonilla L, Rameshwar P. The immune properties of mesenchymal stem cells. Int J Biomed Sci. 2007;3(2):76–80. 23675026
6. Chang KA, Lee JH, Suh YH. Therapeutic potential of human adipose-derived stem cells in neurological disorders. J Pharmacol Sci. 2014;126(4):293–301. doi: 10.1254/jphs.14R10CP 25409785
7. Parker AM, Katz AJ. Adipose-derived stem cells for the regeneration of damaged tissues. Expert Opin Biol Ther. 2006;6(6):567–78. doi: 10.1517/14712598.6.6.567 16706604
8. Ra JC, Shin IS, Kim SH, Kang SK, Kang BC, Lee HY, et al. Safety of intravenous infusion of human adipose tissue-derived mesenchymal stem cells in animals and humans. Stem Cells Dev. 2011;20(8):1297–308. doi: 10.1089/scd.2010.0466 21303266
9. Bang OY, Jin KS, Hwang MN, Kang HY, Kim BJ, Lee SJ, et al. The Effect of CXCR4 Overexpression on Mesenchymal Stem Cell Transplantation in Ischemic Stroke. Cell Med. 2012;4(2):65–76. doi: 10.3727/215517912X647172 26858855
10. Falls DL. Neuregulins: functions, forms, and signaling strategies. Exp Cell Res. 2003;284(1):14–30. doi: 10.1016/s0014-4827(02)00102-7 12648463
11. Steinthorsdottir V, Stefansson H, Ghosh S, Birgisdottir B, Bjornsdottir S, Fasquel AC, et al. Multiple novel transcription initiation sites for NRG1. Gene. 2004;342(1):97–105. doi: 10.1016/j.gene.2004.07.029 15527969
12. Harrison PJ, Law AJ. Neuregulin 1 and schizophrenia: genetics, gene expression, and neurobiology. Biol Psychiatry. 2006;60(2):132–40. doi: 10.1016/j.biopsych.2005.11.002 16442083
13. Tan W, Wang Y, Gold B, Chen J, Dean M, Harrison PJ, et al. Molecular cloning of a brain-specific, developmentally regulated neuregulin 1 (NRG1) isoform and identification of a functional promoter variant associated with schizophrenia. J Biol Chem. 2007;282(33):24343–51. doi: 10.1074/jbc.M702953200 17565985
14. Buonanno A, Fischbach GD. Neuregulin and ErbB receptor signaling pathways in the nervous system. Curr Opin Neurobiol. 2001;11(3):287–96. doi: 10.1016/s0959-4388(00)00210-5 11399426
15. Fischbach GD, Rosen KM. ARIA: A neuromuscular junction neuregulin. Annu Rev Neurosci. 1997;20:429–58. doi: 10.1146/annurev.neuro.20.1.429 9056721
16. Bublil EM, Yarden Y. The EGF receptor family: spearheading a merger of signaling and therapeutics. Curr Opin Cell Biol. 2007;19(2):124–34. doi: 10.1016/j.ceb.2007.02.008 17314037
17. Olayioye MA, Neve RM, Lane HA, Hynes NE. The ErbB signaling network: receptor heterodimerization in development and cancer. EMBO J. 2000;19(13):3159–67. doi: 10.1093/emboj/19.13.3159 10880430
18. Britsch S. The neuregulin-I/ErbB signaling system in development and disease. Adv Anat Embryol Cell Biol. 2007;190:1–65. 17432114
19. Stefansson H, Sigurdsson E, Steinthorsdottir V, Bjornsdottir S, Sigmundsson T, Ghosh S, et al. Neuregulin 1 and susceptibility to schizophrenia. Am J Hum Genet. 2002;71(4):877–92. doi: 10.1086/342734 12145742
20. Cannella B, Pitt D, Marchionni M, Raine CS. Neuregulin and erbB receptor expression in normal and diseased human white matter. J Neuroimmunol. 1999;100(1–2):233–42. doi: 10.1016/s0165-5728(99)00201-5 10695733
21. Erlich S, Shohami E, Pinkas-Kramarski R. Closed head injury induces up-regulation of ErbB-4 receptor at the site of injury. Mol Cell Neurosci. 2000;16(5):597–608. doi: 10.1006/mcne.2000.0894 11083921
22. Tokita Y, Keino H, Matsui F, Aono S, Ishiguro H, Higashiyama S, et al. Regulation of neuregulin expression in the injured rat brain and cultured astrocytes. J Neurosci. 2001;21(4):1257–64. 11160396
23. Parker MW, Chen Y, Hallenbeck JM, Ford BD. Neuregulin expression after focal stroke in the rat. Neurosci Lett. 2002;334(3):169–72. doi: 10.1016/s0304-3940(02)01126-6 12453622
24. Xu Z, Croslan DR, Harris AE, Ford GD, Ford BD. Extended therapeutic window and functional recovery after intraarterial administration of neuregulin-1 after focal ischemic stroke. J Cereb Blood Flow Metab. 2006;26(4):527–35. doi: 10.1038/sj.jcbfm.9600212 16136057
25. Wang S, Li Y, Paudyal R, Ford BD, Zhang X. Spatio-temporal assessment of the neuroprotective effects of neuregulin-1 on ischemic stroke lesions using MRI. J Neurol Sci. 2015;357(1–2):28–34. Epub 2015/07/18. doi: 10.1016/j.jns.2015.06.055 26183085
26. Xu Z, Ford GD, Croslan DR, Jiang J, Gates A, Allen R, et al. Neuroprotection by neuregulin-1 following focal stroke is associated with the attenuation of ischemia-induced pro-inflammatory and stress gene expression. Neurobiol Dis. 2005;19(3):461–70. doi: 10.1016/j.nbd.2005.01.027 16023588
27. Joung I, Yoo M, Woo JH, Chang CY, Heo H, Kwon YK. Secretion of EGF-like domain of heregulinbeta promotes axonal growth and functional recovery of injured sciatic nerve. Mol Cells. 2010;30(5):477–84. doi: 10.1007/s10059-010-0137-5 20957456
28. Cho KO, Kim YS, Cho YJ, Kim SY. Upregulation of DSCR1 (RCAN1 or Adapt78) in the peri-infarct cortex after experimental stroke. Exp Neurol. 2008;212(1):85–92. doi: 10.1016/j.expneurol.2008.03.017 18485347
29. Ryu S, Lee SH, Kim SU, Yoon BW. Human neural stem cells promote proliferation of endogenous neural stem cells and enhance angiogenesis in ischemic rat brain. Neural Regen Res. 2016;11(2):298–304. doi: 10.4103/1673-5374.177739 27073384
30. Lim H, Park SH, Kim SW, Cho KO. Therapeutic Potential of Human Turbinate-Derived Mesenchymal Stem Cells in Experimental Acute Ischemic Stroke. Int Neurourol J. 2018;22(Suppl 3):S131–8. doi: 10.5213/inj.1836220.110 30396262
31. Chen J, Li Y, Wang L, Zhang Z, Lu D, Lu M, et al. Therapeutic benefit of intravenous administration of bone marrow stromal cells after cerebral ischemia in rats. Stroke. 2001;32(4):1005–11. doi: 10.1161/01.str.32.4.1005 11283404
32. Zille M, Farr TD, Przesdzing I, Muller J, Sommer C, Dirnagl U, et al. Visualizing cell death in experimental focal cerebral ischemia: promises, problems, and perspectives. J Cereb Blood Flow Metab. 2012;32(2):213–31. doi: 10.1038/jcbfm.2011.150 22086195
33. Zhao MZ, Nonoguchi N, Ikeda N, Watanabe T, Furutama D, Miyazawa D, et al. Novel therapeutic strategy for stroke in rats by bone marrow stromal cells and ex vivo HGF gene transfer with HSV-1 vector. J Cereb Blood Flow Metab. 2006;26(9):1176–88. doi: 10.1038/sj.jcbfm.9600273 16421510
34. Xu ZF, Jiang J, Ford G, Ford BD. Neuregulin-1 is neuroprotective and attenuates inflammatory responses induced by ischemic stroke. Biochem Biophys Res Commun. 2004;322(2):440–6. doi: 10.1016/j.bbrc.2004.07.149 15325249
35. Chan TM, Harn HJ, Lin HP, Chiu SC, Lin PC, Wang HI, et al. The Use of ADSCs as a Treatment for Chronic Stroke. Cell Transplant. 2014;23(4–5):541–7. doi: 10.3727/096368914X678409 24816449
36. Kang SK, Lee DH, Bae YC, Kim HK, Baik SY, Jung JS. Improvement of neurological deficits by intracerebral transplantation of human adipose tissue-derived stromal cells after cerebral ischemia in rats. Exp Neurol. 2003;183(2):355–66. doi: 10.1016/s0014-4886(03)00089-x 14552877
37. Mu J, Bakreen A, Juntunen M, Korhonen P, Oinonen E, Cui L, et al. Combined Adipose Tissue-Derived Mesenchymal Stem Cell Therapy and Rehabilitation in Experimental Stroke. Front Neurol. 2019;10:235. doi: 10.3389/fneur.2019.00235 30972000
38. Kurozumi K, Nakamura K, Tamiya T, Kawano Y, Kobune M, Hirai S, et al. BDNF gene-modified mesenchymal stem cells promote functional recovery and reduce infarct size in the rat middle cerebral artery occlusion model. Mol Ther. 2004;9(2):189–97. doi: 10.1016/j.ymthe.2003.10.012 14759803
39. Nomura T, Honmou O, Harada K, Houkin K, Hamada H, Kocsis JD. I.V. infusion of brain-derived neurotrophic factor gene-modified human mesenchymal stem cells protects against injury in a cerebral ischemia model in adult rat. Neuroscience. 2005;136(1):161–9. doi: 10.1016/j.neuroscience.2005.06.062 16229956
40. Jeong CH, Kim SM, Lim JY, Ryu CH, Jun JA, Jeun SS. Mesenchymal stem cells expressing brain-derived neurotrophic factor enhance endogenous neurogenesis in an ischemic stroke model. Biomed Res Int. 2014;2014:129145. doi: 10.1155/2014/129145 24672780
41. Chen X, Li Y, Wang L, Katakowski M, Zhang L, Chen J, et al. Ischemic rat brain extracts induce human marrow stromal cell growth factor production. Neuropathology. 2002;22(4):275–9. 12564767
42. De Luca A, Roma C, Gallo M, Fenizia F, Bergantino F, Frezzetti D, et al. RNA-seq analysis reveals significant effects of EGFR signalling on the secretome of mesenchymal stem cells. Oncotarget. 2014;5(21):10518–28. doi: 10.18632/oncotarget.2420 25344915
43. Liu H, Honmou O, Harada K, Nakamura K, Houkin K, Hamada H, et al. Neuroprotection by PlGF gene-modified human mesenchymal stem cells after cerebral ischaemia. Brain. 2006;129(Pt 10):2734–45. doi: 10.1093/brain/awl207 16901914
44. Chen B, Zhang F, Li QY, Gong A, Lan Q. Protective Effect of Ad-VEGF-Bone Mesenchymal Stem Cells on Cerebral Infarction. Turk Neurosurg. 2016;26(1):8–15. doi: 10.5137/1019-5149.JTN.11488-14.3 26768863
45. Lai T, Li M, Zheng L, Song Y, Xu X, Guo Y, et al. Over-expression of VEGF in marrow stromal cells promotes angiogenesis in rats with cerebral infarction via the synergistic effects of VEGF and Ang-2. J Huazhong Univ Sci Technolog Med Sci. 2012;32(5):724–31. doi: 10.1007/s11596-012-1025-3 23073804
46. Ikeda N, Nonoguchi N, Zhao MZ, Watanabe T, Kajimoto Y, Furutama D, et al. Bone marrow stromal cells that enhanced fibroblast growth factor-2 secretion by herpes simplex virus vector improve neurological outcome after transient focal cerebral ischemia in rats. Stroke. 2005;36(12):2725–30. doi: 10.1161/01.STR.0000190006.88896.d3 16282547
47. Miki Y, Nonoguchi N, Ikeda N, Coffin RS, Kuroiwa T, Miyatake SI. Vascular endothelial growth factor gene-transferred bone marrow stromal cells engineered with a herpes simplex virus type 1 vector can improve neurological deficits and reduce infarction volume in rat brain ischemia. Neurosurgery. 2007;61(3):586–94. doi: 10.1227/01.NEU.0000290907.30814.42 17881973
48. Guo WP, Wang J, Li RX, Peng YW. Neuroprotective effects of neuregulin-1 in rat models of focal cerebral ischemia. Brain Res. 2006;1087(1):180–5. doi: 10.1016/j.brainres.2006.03.007 16616052
49. Shyu WC, Lin SZ, Chiang MF, Yang HI, Thajeb P, Li H. Neuregulin-1 reduces ischemia-induced brain damage in rats. Neurobiol Aging. 2004;25(7):935–44. doi: 10.1016/j.neurobiolaging.2003.10.012 15212847
50. Xu Z, Ford BD. Upregulation of erbB receptors in rat brain after middle cerebral arterial occlusion. Neurosci Lett. 2005;375(3):181–6. doi: 10.1016/j.neulet.2004.11.039 15694257
51. Li B, Woo RS, Mei L, Malinow R. The neuregulin-1 receptor erbB4 controls glutamatergic synapse maturation and plasticity. Neuron. 2007;54(4):583–97. doi: 10.1016/j.neuron.2007.03.028 17521571
52. Guan YF, Wu CY, Fang YY, Zeng YN, Luo ZY, Li SJ, et al. Neuregulin 1 protects against ischemic brain injury via ErbB4 receptors by increasing GABAergic transmission. Neuroscience. 2015;307:151–9. doi: 10.1016/j.neuroscience.2015.08.047 26318331
53. Chen YJ, Zhang M, Yin DM, Wen L, Ting AN, Wang P, et al. ErbB4 in parvalbumin-positive interneurons is critical for neuregulin 1 regulation of long-term potentiation. Proc Natl Acad Sci U S A. 2010;107(50):21818–23. doi: 10.1073/pnas.1010669107 21106764
54. Woo RS, Li XM, Tao Y, Carpenter-Hyland E, Huang YZ, Weber J, et al. Neuregulin-1 enhances depolarization-induced GABA release. Neuron. 2007;54(4):599–610. doi: 10.1016/j.neuron.2007.04.009 17521572
55. Iwakura Y, Nawa H. ErbB1-4-dependent EGF/neuregulin signals and their cross talk in the central nervous system: pathological implications in schizophrenia and Parkinson's disease. Front Cell Neurosci. 2013;7. ARTN 410.3389/fncel.2013.00004.
56. Yang Z, Jiang Q, Chen SX, Hu CL, Shen HF, Huang PZ, et al. Differential changes in Neuregulin-1 signaling in major brain regions in a lipopolysaccharide-induced neuroinflammation mouse model. Mol Med Rep. 2016;14(1):790–6. doi: 10.3892/mmr.2016.5325 27220549
57. Kim HG, Lee CK, Cho SM, Whang K, Cha BH, Shin JH, et al. Neuregulin 1 up-regulates the expression of nicotinic acetylcholine receptors through the ErbB2/ErbB3-PI3K-MAPK signaling cascade in adult autonomic ganglion neurons. J Neurochem. 2013;124(4):502–13. doi: 10.1111/jnc.12109 23199222
Článek vyšel v časopise
PLOS One
2019 Číslo 9
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Je libo čepici místo mozkového implantátu?
- Pomůže v budoucnu s triáží na pohotovostech umělá inteligence?
- AI může chirurgům poskytnout cenná data i zpětnou vazbu v reálném čase
- Nová metoda odlišení nádorové tkáně může zpřesnit resekci glioblastomů
Nejčtenější v tomto čísle
- Graviola (Annona muricata) attenuates behavioural alterations and testicular oxidative stress induced by streptozotocin in diabetic rats
- CH(II), a cerebroprotein hydrolysate, exhibits potential neuro-protective effect on Alzheimer’s disease
- Comparison between Aptima Assays (Hologic) and the Allplex STI Essential Assay (Seegene) for the diagnosis of Sexually transmitted infections
- Assessment of glucose-6-phosphate dehydrogenase activity using CareStart G6PD rapid diagnostic test and associated genetic variants in Plasmodium vivax malaria endemic setting in Mauritania
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy