Respiratory variations in pulse pressure and photoplethysmographic waveform amplitude during positive expiratory pressure and continuous positive airway pressure in a model of progressive hypovolemia
Autoři:
Ingrid Elise Hoff aff001; Jonny Hisdal aff003; Svein Aslak Landsverk aff002; Jo Røislien aff001; Knut Arvid Kirkebøen aff004; Lars Øivind Høiseth aff002
Působiště autorů:
Norwegian Air Ambulance Foundation, Sentrum, Oslo, Norway
aff001; Department of Anesthesiology, Oslo University Hospital, Nydalen, Oslo, Norway
aff002; Section of Vascular Investigations, Department of Vascular Surgery, Oslo University Hospital, Nydalen, Oslo, Norway
aff003; Faculty of Medicine, University of Oslo, Blindern, Oslo, Norway
aff004
Vyšlo v časopise:
PLoS ONE 14(9)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0223071
Souhrn
Purpose
Respiratory variations in pulse pressure (dPP) and photoplethysmographic waveform amplitude (dPOP) are used for evaluation of volume status in mechanically ventilated patients. Amplification of intrathoracic pressure changes may enable their use also during spontaneous breathing. We investigated the association between the degree of hypovolemia and dPP and dPOP at different levels of two commonly applied clinical interventions; positive expiratory pressure (PEP) and continuous positive airway pressure (CPAP).
Methods
20 healthy volunteers were exposed to progressive hypovolemia by lower body negative pressure (LBNP). PEP of 0 (baseline), 5 and 10 cmH2O was applied by an expiratory resistor and CPAP of 0 (baseline), 5 and 10 cmH2O by a facemask. dPP was obtained non-invasively with the volume clamp method and dPOP from a pulse oximeter. Central venous pressure was measured in 10 subjects. Associations between changes were examined using linear mixed-effects regression models.
Results
dPP increased with progressive LBNP at all levels of PEP and CPAP. The LBNP-induced increase in dPP was amplified by PEP 10 cmH20. dPOP increased with progressive LBNP during PEP 5 and PEP 10, and during all levels of CPAP. There was no additional effect of the level of PEP or CPAP on dPOP. Progressive hypovolemia and increasing levels of PEP were reflected by increasing respiratory variations in CVP.
Conclusion
dPP and dPOP reflected progressive hypovolemia in spontaneously breathing healthy volunteers during PEP and CPAP. An increase in PEP from baseline to 10 cmH2O augmented the increase in dPP, but not in dPOP.
Klíčová slova:
Blood pressure – Breathing – Heart rate – Hemodynamics – stroke – Tidal volume – Resistors
Zdroje
1. Shamir M, Eidelman LA, Floman Y, Kaplan L, Pizov R. Pulse oximetry plethysmographic waveform during changes in blood volume. Br J Anaesth. 1999;82(2):178–81. Epub 1999/06/12. doi: 10.1093/bja/82.2.178 10364990.
2. Pizov R, Eden A, Bystritski D, Kalina E, Tamir A, Gelman S. Arterial and plethysmographic waveform analysis in anesthetized patients with hypovolemia. Anesthesiology. 2010;113(1):83–91. Epub 2010/06/08. doi: 10.1097/ALN.0b013e3181da839f 20526193.
3. Cannesson M, Attof Y, Rosamel P, Desebbe O, Joseph P, Metton O, et al. Respiratory variations in pulse oximetry plethysmographic waveform amplitude to predict fluid responsiveness in the operating room. Anesthesiology. 2007;106(6):1105–11. Epub 2007/05/26. doi: 10.1097/01.anes.0000267593.72744.20 17525584.
4. Berger D, Takala J. Determinants of systemic venous return and the impact of positive pressure ventilation. Ann Transl Med. 2018;6(18):350. Epub 2018/10/30. doi: 10.21037/atm.2018.05.27 30370277
5. Dahl MK, Vistisen ST, Koefoed-Nielsen J, Larsson A. Using an expiratory resistor, arterial pulse pressure variations predict fluid responsiveness during spontaneous breathing: an experimental porcine study. Crit Care. 2009;13(2):R39. Epub 2009/03/24. doi: 10.1186/cc7760 19302700
6. Monge Garcia MI, Gil Cano A, Diaz Monrove JC. Arterial pressure changes during the Valsalva maneuver to predict fluid responsiveness in spontaneously breathing patients. Intensive Care Med. 2009;35(1):77–84. Epub 2008/10/03. doi: 10.1007/s00134-008-1295-1 18830578.
7. Hisdal J, Toska K, Walloe L. Design of a chamber for lower body negative pressure with controlled onset rate. Aviat Space Environ Med. 2003;74(8):874–8. Epub 2003/08/20. 12924764.
8. Cooke WH, Ryan KL, Convertino VA. Lower body negative pressure as a model to study progression to acute hemorrhagic shock in humans. J Appl Physiol (1985). 2004;96(4):1249–61. Epub 2004/03/16. doi: 10.1152/japplphysiol.01155.2003 15016789.
9. Ricksten SE, Medegard A, Curelaru I, Gustavsson B, Linder LE. Estimation of central venous pressure by measurement of proximal axillary venous pressure using a "half-way" catheter. Acta Anaesthesiol Scand. 1986;30(1):13–7. Epub 1986/01/01. doi: 10.1111/j.1399-6576.1986.tb02358.x 3515822.
10. Eriksen M, Walloe L. Improved method for cardiac output determination in man using ultrasound Doppler technique. Med Biol Eng Comput. 1990;28(6):555–60. Epub 1990/11/01. doi: 10.1007/bf02442607 2287179.
11. Roesch A, Schmidbauer H, Roesch MA. Package ‘WaveletComp’. The Comprehensive R Archive Network2014.
12. Westermark PO. peakPick: Peak Picking Methods Inspired by Biological Data. R package version 0.11. 2015.
13. Moher D, Hopewell S, Schulz KF, Montori V, Gotzsche PC, Devereaux PJ, et al. CONSORT 2010 explanation and elaboration: updated guidelines for reporting parallel group randomised trials. BMJ. 2010;340:c869. Epub 2010/03/25. doi: 10.1136/bmj.c869 20332511
14. Ripley B, Venables B, Bates DM, Hornik K, Gebhardt A, Firth D, et al. Package ‘mass’. CRAN Repos Httpcran R-Proj OrgwebpackagesMASSMASS Pdf. 2013.
15. Hothorn T, Bretz F, Westfall P. Simultaneous inference in general parametric models. Biom J. 2008;50(3):346–63. doi: 10.1002/bimj.200810425 18481363
16. Michard F. Changes in arterial pressure during mechanical ventilation. Anesthesiology. 2005;103(2):419–28; quiz 49–5. Epub 2005/07/30. doi: 10.1097/00000542-200508000-00026 16052125.
17. Reuter DA, Bayerlein J, Goepfert MS, Weis FC, Kilger E, Lamm P, et al. Influence of tidal volume on left ventricular stroke volume variation measured by pulse contour analysis in mechanically ventilated patients. Intensive Care Med. 2003;29(3):476–80. Epub 2003/02/13. doi: 10.1007/s00134-003-1649-7 12579420.
18. De Backer D, Heenen S, Piagnerelli M, Koch M, Vincent JL. Pulse pressure variations to predict fluid responsiveness: influence of tidal volume. Intensive Care Med. 2005;31(4):517–23. Epub 2005/03/09. doi: 10.1007/s00134-005-2586-4 15754196.
19. Mesquida J, Kim HK, Pinsky MR. Effect of tidal volume, intrathoracic pressure, and cardiac contractility on variations in pulse pressure, stroke volume, and intrathoracic blood volume. Intensive Care Med. 2011;37(10):1672–9. Epub 2011/07/09. doi: 10.1007/s00134-011-2304-3 21739340
20. Magder S. Heart-Lung interaction in spontaneous breathing subjects: the basics. Ann Transl Med. 2018;6(18):348. Epub 2018/10/30. doi: 10.21037/atm.2018.06.19 30370275
21. Zollei E, Bertalan V, Nemeth A, Csabi P, Laszlo I, Kaszaki J, et al. Non-invasive detection of hypovolemia or fluid responsiveness in spontaneously breathing subjects. Bmc Anesthesiol. 2013;13. doi: 10.1186/1471-2253-13-40 24188480
22. Preau S, Dewavrin F, Soland V, Bortolotti P, Colling D, Chagnon JL, et al. Hemodynamic changes during a deep inspiration maneuver predict fluid responsiveness in spontaneously breathing patients. Cardiol Res Pract. 2012;2012:191807. Epub 2011/12/24. doi: 10.1155/2012/191807 22195286
23. Hong DM, Lee JM, Seo JH, Min JJ, Jeon Y, Bahk JH. Pulse pressure variation to predict fluid responsiveness in spontaneously breathing patients: tidal vs. forced inspiratory breathing. Anaesthesia. 2014;69(7):717–22. Epub 2014/04/30. doi: 10.1111/anae.12678 24773446.
24. Soubrier S, Saulnier F, Hubert H, Delour P, Lenci H, Onimus T, et al. Can dynamic indicators help the prediction of fluid responsiveness in spontaneously breathing critically ill patients? Intensive Care Med. 2007;33(7):1117–24. Epub 2007/05/18. doi: 10.1007/s00134-007-0644-9 17508201.
25. Elstad M, Walloe L. Heart rate variability and stroke volume variability to detect central hypovolemia during spontaneous breathing and supported ventilation in young, healthy volunteers. Physiological measurement. 2015;36(4):671–81. doi: 10.1088/0967-3334/36/4/671 25799094.
26. Dahl M, Hayes C, Rasmussen BS, Larsson A, Secher NH. Can a central blood volume deficit be detected by systolic pressure variation during spontaneous breathing? Bmc Anesthesiol. 2015;16(1):58.
27. Bronzwaer AS, Ouweneel DM, Stok WJ, Westerhof BE, van Lieshout JJ. Arterial Pressure Variation as a Biomarker of Preload Dependency in Spontaneously Breathing Subjects—A Proof of Principle. PLoS One. 2015;10(9):e0137364. Epub 2015/09/04. doi: 10.1371/journal.pone.0137364 26335939
28. Alian AA, Shelley KH. Photoplethysmography. Best Pract Res Clin Anaesthesiol. 2014;28(4):395–406. Epub 2014/12/07. doi: 10.1016/j.bpa.2014.08.006 25480769.
29. Addison PS. A review of signal processing used in the implementation of the pulse oximetry photoplethysmographic fluid responsiveness parameter. Anesth Analg. 2014;119(6):1293–306. Epub 2014/11/19. doi: 10.1213/ANE.0000000000000392 25405691.
30. Nilsson LM. Respiration signals from photoplethysmography. Anesth Analg. 2013;117(4):859–65. Epub 2013/03/02. doi: 10.1213/ANE.0b013e31828098b2 23449854.
31. Yang Y, Seok HS, Noh GJ, Choi BM, Shin H. Postoperative Pain Assessment Indices Based on Photoplethysmography Waveform Analysis. Frontiers in physiology. 2018;9:1199. Epub 2018/09/14. doi: 10.3389/fphys.2018.01199 30210363.
32. Shelley KH. Photoplethysmography: beyond the calculation of arterial oxygen saturation and heart rate. Anesth Analg. 2007;105(6 Suppl):S31–6, tables of contents. Epub 2007/12/06. doi: 10.1213/01.ane.0000269512.82836.c9 18048895.
33. Hoff IE, Hoiseth LO, Hisdal J, Roislien J, Landsverk SA, Kirkeboen KA. Respiratory Variations in Pulse Pressure Reflect Central Hypovolemia during Noninvasive Positive Pressure Ventilation. Crit Care Res Pract. 2014;2014:712728. Epub 2014/04/04. doi: 10.1155/2014/712728 24696781
34. Delerme S, Castro S, Freund Y, Nazeyrollas P, Josse MO, Madonna-Py B, et al. Relation between pulse oximetry plethysmographic waveform amplitude induced by passive leg raising and cardiac index in spontaneously breathing subjects. Am J Emerg Med. 2010;28(4):505–10. Epub 2010/05/15. doi: 10.1016/j.ajem.2009.03.023 20466234.
35. Delerme S, Renault R, Le Manach Y, Lvovschi V, Bendahou M, Riou B, et al. Variations in pulse oximetry plethysmographic waveform amplitude induced by passive leg raising in spontaneously breathing volunteers. Am J Emerg Med. 2007;25(6):637–42. Epub 2007/07/04. doi: 10.1016/j.ajem.2006.11.035 17606088.
36. Keller G, Cassar E, Desebbe O, Lehot JJ, Cannesson M. Ability of pleth variability index to detect hemodynamic changes induced by passive leg raising in spontaneously breathing volunteers. Crit Care. 2008;12(2):R37. Epub 2008/03/08. doi: 10.1186/cc6822 18325089
37. Nilsson LM, Lindenberger DM, Hahn RG. The effect of positive end-expiratory pressure and tripled tidal volume on pleth variability index during hypovolaemia in conscious subjects: a volunteer study. Eur J Anaesthesiol. 2013;30(11):671–7. Epub 2013/07/11. doi: 10.1097/EJA.0b013e32836394c0 23839074.
38. Heenen S, De Backer D, Vincent JL. How can the response to volume expansion in patients with spontaneous respiratory movements be predicted? Crit Care. 2006;10(4):R102. Epub 2006/07/19. doi: 10.1186/cc4970 16846530
39. Goswami N, Blaber AP, Hinghofer-Szalkay H, Convertino VA. Lower Body Negative Pressure: Physiological Effects, Applications, and Implementation. Physiol Rev. 2019;99(1):807–51. Epub 2018/12/13. doi: 10.1152/physrev.00006.2018 30540225.
40. Hoiseth LO, Hoff IE, Hagen OA, Kirkeboen KA, Landsverk SA. Respiratory variations in the photoplethysmographic waveform amplitude depend on type of pulse oximetry device. J Clin Monit Comput. 2016;30(3):317–25. Epub 2015/06/13. doi: 10.1007/s10877-015-9720-9 26067403.
41. Dorlas JC, Nijboer JA. Photo-electric plethysmography as a monitoring device in anaesthesia. Application and interpretation. Br J Anaesth. 1985;57(5):524–30. Epub 1985/05/01. doi: 10.1093/bja/57.5.524 3994887.
42. Lansdorp B, Ouweneel D, de Keijzer A, van der Hoeven JG, Lemson J, Pickkers P. Non-invasive measurement of pulse pressure variation and systolic pressure variation using a finger cuff corresponds with intra-arterial measurement. Br J Anaesth. 2011;107(4):540–5. Epub 2011/06/28. doi: 10.1093/bja/aer187 21700612.
Článek vyšel v časopise
PLOS One
2019 Číslo 9
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Je libo čepici místo mozkového implantátu?
- Pomůže v budoucnu s triáží na pohotovostech umělá inteligence?
- AI může chirurgům poskytnout cenná data i zpětnou vazbu v reálném čase
- Nová metoda odlišení nádorové tkáně může zpřesnit resekci glioblastomů
Nejčtenější v tomto čísle
- Graviola (Annona muricata) attenuates behavioural alterations and testicular oxidative stress induced by streptozotocin in diabetic rats
- CH(II), a cerebroprotein hydrolysate, exhibits potential neuro-protective effect on Alzheimer’s disease
- Comparison between Aptima Assays (Hologic) and the Allplex STI Essential Assay (Seegene) for the diagnosis of Sexually transmitted infections
- Assessment of glucose-6-phosphate dehydrogenase activity using CareStart G6PD rapid diagnostic test and associated genetic variants in Plasmodium vivax malaria endemic setting in Mauritania
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy