#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Proteomics approach to identify serum biomarkers associated with the progression of diabetes in Korean patients with abdominal obesity


Autoři: Sang Woo Kim aff001;  Jung-Won Choi aff001;  Jong Won Yun aff003;  In-Sung Chung aff004;  Ho Chan Cho aff005;  Seung-Eun Song aff006;  Seung-Soon Im aff006;  Dae-Kyu Song aff006
Působiště autorů: Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung-si, Gangwon-do, South Korea aff001;  Catholic Kwandong University, International St. Mary’s Hospital, Incheon Metropolitan City, South Korea aff002;  Department of Biotechnology, Daegu University, Kyungsan, Kyungbuk, South Korea aff003;  Division of Occupational and Environmental Medicine and Department of Preventive Medicine, Keimyung, University School of Medicine, Daegu, South Korea aff004;  Department of Internal Medicine, Keimyung, University School of Medicine, Daegu, South Korea aff005;  Department of Physiology and Obesity-mediated Disease Research Center, Keimyung, University School of Medicine, Daegu, South Korea aff006
Vyšlo v časopise: PLoS ONE 14(9)
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pone.0222032

Souhrn

Type 2 diabetes is a metabolic disease with a group of metabolic derangements and inflammatory reactants in the serum. Despite the substantial public health implications, markers of diabetes progression with abdominal obesity are still needed to facilitate early detection and treatment. In this study, we performed a proteomic approach to identify differential target proteins underlying diabetes progression in patients with abdominal obesity. Proteomic differences were investigated in the serum of controls and patients with prediabetes or diabetes with or without abdominal obesity by 2-DE combined with MALDI-TOF-MS. Proteomics data were validated by western blot analyses and major protein-protein interactions were assessed using a network analysis with String database. Among 245 matched protein spots, 36 exhibited marked differences in normal patients with abdominal obesity, prediabetes, and diabetes compared to levels in normal patients without abdominal obesity. Seven (Alpha-1-antichymotrypsin, Alpha-1-antitrypsin, Apolipoprotein A-I, haptoglobin, retinol-binding protein 4, transthyretin, and zinc-alpha2-glycoprotein) of these spots exhibited significant differences between normal and prediabetes/diabetes patients. After a network analysis, functional annotation using Gene Ontology indicated that most of the identified proteins were involved in lipid transport, lipid localization, and the regulation of serum lipoprotein particle levels. Our results indicated that variation in the levels of these identified protein biomarkers has been reported in normal, prediabetes and diabetic Assessment of the levels of these biomarkers may contribute to the development of biomarkers for not only early diagnosis but also in prognosis of diabetes mellitus type 2.

Klíčová slova:

Biology and life sciences – Physiology – Physiological parameters – Obesity – Biochemistry – Proteins – Serum proteins – Biomarkers – Developmental biology – Molecular development – Molecular biology – Molecular biology techniques – Molecular biology assays and analysis techniques – Gene expression and vector techniques – Protein expression – Medicine and health sciences – Body weight – Immune physiology – Endocrinology – Endocrine disorders – Metabolic disorders – Immunology – Immune response – Inflammation – Immune system – Innate immune system – Cytokines – Diagnostic medicine – Signs and symptoms – Pathology and laboratory medicine – Research and analysis methods


Zdroje

1. Verma S, Hussain ME. Obesity and diabetes: An update. Diabetes Metab Syndr. 2017;11(1):73–79. doi: 10.1016/j.dsx.2016.06.017 27353549.

2. Sowers JR. Obesity as a cardiovascular risk factor. Am J Med. 2003;115 Suppl 8A:37S–41S. doi: 10.1016/j.amjmed.2003.08.012 14678864.

3. Seidell JC. Obesity, insulin resistance and diabetes—a worldwide epidemic. Br J Nutr. 2000;83 Suppl 1:S5–8. doi: 10.1017/s000711450000088x 10889785.

4. Ginsberg HN. Lipoprotein physiology in nondiabetic and diabetic states. Relationship to atherogenesis. Diabetes Care. 1991;14(9):839–855. doi: 10.2337/diacare.14.9.839 1959476.

5. Lumeng CN, Saltiel AR. Inflammatory links between obesity and metabolic disease. J Clin Invest. 2011;121(6):2111–2117. doi: 10.1172/JCI57132 21633179; PubMed Central PMCID: PMC3104776.

6. Greenberg AS, Obin MS. Obesity and the role of adipose tissue in inflammation and metabolism. Am J Clin Nutr. 2006;83(2):461S–465S. doi: 10.1093/ajcn/83.2.461S 16470013.

7. Van Gaal LF, Mertens IL, De Block CE. Mechanisms linking obesity with cardiovascular disease. Nature. 2006;444(7121):875–880. doi: 10.1038/nature05487 17167476.

8. Crook MA, Tutt P, Pickup JC. Elevated serum sialic acid concentration in NIDDM and its relationship to blood pressure and retinopathy. Diabetes Care. 1993;16(1):57–60. doi: 10.2337/diacare.16.1.57 8422833.

9. Pickup JC, Mattock MB, Chusney GD, Burt D. NIDDM as a disease of the innate immune system: association of acute-phase reactants and interleukin-6 with metabolic syndrome X. Diabetologia. 1997;40(11):1286–1292. doi: 10.1007/s001250050822 9389420.

10. Dandona P, Aljada A, Bandyopadhyay A. Inflammation: the link between insulin resistance, obesity and diabetes. Trends Immunol. 2004;25(1):4–7. 14698276.

11. Daniele G, Guardado Mendoza R, Winnier D, Fiorentino TV, Pengou Z, Cornell J, et al. The inflammatory status score including IL-6, TNF-alpha, osteopontin, fractalkine, MCP-1 and adiponectin underlies whole-body insulin resistance and hyperglycemia in type 2 diabetes mellitus. Acta Diabetol. 2014;51(1):123–131. doi: 10.1007/s00592-013-0543-1 24370923.

12. Anderson NL, Anderson NG. The human plasma proteome: history, character, and diagnostic prospects. Mol Cell Proteomics. 2002;1(11):845–867. doi: 10.1074/mcp.r200007-mcp200 12488461.

13. Choi JW, Wang X, Joo JI, Kim DH, Oh TS, Choi DK, et al. Plasma proteome analysis in diet-induced obesity-prone and obesity-resistant rats. Proteomics. 2010;10(24):4386–4400. doi: 10.1002/pmic.201000391 21136593.

14. Dall'Olio FG, Brocchi S, Massucci M, Sperandi F, Melotti B, Ardizzoni A. Distinguishing between immune-related pneumonitis and disease progression in advanced Non Small Cell Lung Cancer treated with PD-1 inhibitors: Can serum tumour markers have a role? Eur J Cancer. 2018;95:127–129. doi: 10.1016/j.ejca.2018.02.020 29573943.

15. Wu C, Liu L, Zhao P, Tang D, Yao D, Zhu L, et al. Potential Serum Markers for Monitoring the Progression of Hepatitis B Virus-Associated Chronic Hepatic Lesions to Liver Cirrhosis. Gut Liver. 2015;9(5):665–671. doi: 10.5009/gnl14212 25963079; PubMed Central PMCID: PMC4562785.

16. Cavalcante Mde S, Torres-Romero JC, Lobo MD, Moreno FB, Bezerra LP, Lima DS, et al. A panel of glycoproteins as candidate biomarkers for early diagnosis and treatment evaluation of B-cell acute lymphoblastic leukemia. Biomark Res. 2016;4:1. doi: 10.1186/s40364-016-0055-6 26823978; PubMed Central PMCID: PMC4730630.

17. Novelli G, Ciccacci C, Borgiani P, Papaluca Amati M, Abadie E. Genetic tests and genomic biomarkers: regulation, qualification and validation. Clin Cases Miner Bone Metab. 2008;5(2):149–154. 22460999; PubMed Central PMCID: PMC2781197.

18. Savaryn JP, Catherman AD, Thomas PM, Abecassis MM, Kelleher NL. The emergence of top-down proteomics in clinical research. Genome Med. 2013;5(6):53. doi: 10.1186/gm457 23806018; PubMed Central PMCID: PMC3707033.

19. Kim SW, Choi JH, Mukherjee R, Hwang KC, Yun JW. Proteomic identification of fat-browning markers in cultured white adipocytes treated with curcumin. Mol Cell Biochem. 2016;415(1–2):51–66. doi: 10.1007/s11010-016-2676-3 26915100.

20. Fernandez J, Gharahdaghi F, Mische SM. Routine identification of proteins from sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) gels or polyvinyl difluoride membranes using matrix assisted laser desorption/ionization-time of flight-mass spectrometry (MALDI-TOF-MS). Electrophoresis. 1998;19(6):1036–1045. doi: 10.1002/elps.1150190619 9638950.

21. Szklarczyk D, Morris JH, Cook H, Kuhn M, Wyder S, Simonovic M, et al. The STRING database in 2017: quality-controlled protein-protein association networks, made broadly accessible. Nucleic Acids Res. 2017;45(D1):D362–D368. doi: 10.1093/nar/gkw937 27924014; PubMed Central PMCID: PMC5210637.

22. O'Rourke RW, White AE, Metcalf MD, Winters BR, Diggs BS, Zhu X, et al. Systemic inflammation and insulin sensitivity in obese IFN-gamma knockout mice. Metabolism. 2012;61(8):1152–1161. doi: 10.1016/j.metabol.2012.01.018 22386937; PubMed Central PMCID: PMC3457921.

23. Rocha VZ, Folco EJ, Sukhova G, Shimizu K, Gotsman I, Vernon AH, et al. Interferon-gamma, a Th1 cytokine, regulates fat inflammation: a role for adaptive immunity in obesity. Circ Res. 2008;103(5):467–476. doi: 10.1161/CIRCRESAHA.108.177105 18658050; PubMed Central PMCID: PMC2740384.

24. Marcelino Rodriguez I, Oliva Garcia J, Aleman Sanchez JJ, Almeida Gonzalez D, Dominguez Coello S, Brito Diaz B, et al. Lipid and inflammatory biomarker profiles in early insulin resistance. Acta Diabetol. 2016;53(6):905–913. doi: 10.1007/s00592-016-0885-6 27432443.

25. Makki K, Froguel P, Wolowczuk I. Adipose tissue in obesity-related inflammation and insulin resistance: cells, cytokines, and chemokines. ISRN Inflamm. 2013;2013:139239. doi: 10.1155/2013/139239 24455420; PubMed Central PMCID: PMC3881510.

26. Takahashi E, Unoki-Kubota H, Shimizu Y, Okamura T, Iwata W, Kajio H, et al. Proteomic analysis of serum biomarkers for prediabetes using the Long-Evans Agouti rat, a spontaneous animal model of type 2 diabetes mellitus. J Diabetes Investig. 2017;8(5):661–671. doi: 10.1111/jdi.12638 28150914; PubMed Central PMCID: PMC5583949.

27. Meistermann H, Norris JL, Aerni HR, Cornett DS, Friedlein A, Erskine AR, et al. Biomarker discovery by imaging mass spectrometry: transthyretin is a biomarker for gentamicin-induced nephrotoxicity in rat. Mol Cell Proteomics. 2006;5(10):1876–1886. doi: 10.1074/mcp.M500399-MCP200 16705188.

28. Nedelkov D, Kiernan UA, Niederkofler EE, Tubbs KA, Nelson RW. Population proteomics: the concept, attributes, and potential for cancer biomarker research. Mol Cell Proteomics. 2006;5(10):1811–1818. doi: 10.1074/mcp.R600006-MCP200 16735302.

29. Ingenbleek Y, De Visscher M, De Nayer P. Measurement of prealbumin as index of protein-calorie malnutrition. Lancet. 1972;2(7768):106–109. doi: 10.1016/s0140-6736(72)91596-6 4113892.

30. Zheng F, Kim YJ, Moran TH, Li H, Bi S. Central transthyretin acts to decrease food intake and body weight. Sci Rep. 2016;6:24238. doi: 10.1038/srep24238 27053000; PubMed Central PMCID: PMC4823743.

31. Lai Z, Colon W, Kelly JW. The acid-mediated denaturation pathway of transthyretin yields a conformational intermediate that can self-assemble into amyloid. Biochemistry. 1996;35(20):6470–6482. doi: 10.1021/bi952501g 8639594.

32. Hayden MR, Tyagi SC. "A" is for amylin and amyloid in type 2 diabetes mellitus. JOP. 2001;2(4):124–139. 11875249.

33. Tian M, Liang Z, Liu R, Li K, Tan X, Luo Y, et al. Effects of sitagliptin on circulating zinc-alpha2-glycoprotein levels in newly diagnosed type 2 diabetes patients: a randomized trial. Eur J Endocrinol. 2016;174(2):147–155. doi: 10.1530/EJE-15-0637 26546612.

34. Bing C, Bao Y, Jenkins J, Sanders P, Manieri M, Cinti S, et al. Zinc-alpha2-glycoprotein, a lipid mobilizing factor, is expressed in adipocytes and is up-regulated in mice with cancer cachexia. Proc Natl Acad Sci U S A. 2004;101(8):2500–2505. doi: 10.1073/pnas.0308647100 14983038; PubMed Central PMCID: PMC356979.

35. Choi JW, Liu H, Mukherjee R, Yun JW. Downregulation of fetuin-B and zinc-alpha2-glycoprotein is linked to impaired fatty acid metabolism in liver cells. Cell Physiol Biochem. 2012;30(2):295–306. doi: 10.1159/000339065 22739111.

36. MacKellar M, Vigerust DJ. Role of Haptoglobin in Health and Disease: A Focus on Diabetes. Clin Diabetes. 2016;34(3):148–157. doi: 10.2337/diaclin.34.3.148 27621532; PubMed Central PMCID: PMC5019011.

37. Chiellini C, Bertacca A, Novelli SE, Gorgun CZ, Ciccarone A, Giordano A, et al. Obesity modulates the expression of haptoglobin in the white adipose tissue via TNFalpha. J Cell Physiol. 2002;190(2):251–258. doi: 10.1002/jcp.10061 11807829.

38. Chiellini C, Santini F, Marsili A, Berti P, Bertacca A, Pelosini C, et al. Serum haptoglobin: a novel marker of adiposity in humans. J Clin Endocrinol Metab. 2004;89(6):2678–2683. doi: 10.1210/jc.2003-031965 15181041.


Článek vyšel v časopise

PLOS One


2019 Číslo 9
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

plice
INSIGHTS from European Respiratory Congress
nový kurz

Současné pohledy na riziko v parodontologii
Autoři: MUDr. Ladislav Korábek, CSc., MBA

Svět praktické medicíny 3/2024 (znalostní test z časopisu)

Kardiologické projevy hypereozinofilií
Autoři: prof. MUDr. Petr Němec, Ph.D.

Střevní příprava před kolonoskopií
Autoři: MUDr. Klára Kmochová, Ph.D.

Všechny kurzy
Kurzy Podcasty Doporučená témata Časopisy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#