Parameterization-induced uncertainties and impacts of crop management harmonization in a global gridded crop model ensemble
Autoři:
Christian Folberth aff001; Joshua Elliott aff002; Christoph Müller aff005; Juraj Balkovič aff001; James Chryssanthacopoulos aff003; Roberto C. Izaurralde aff007; Curtis D. Jones aff007; Nikolay Khabarov aff001; Wenfeng Liu aff009; Ashwan Reddy aff007; Erwin Schmid aff010; Rastislav Skalský aff001; Hong Yang aff008; Almut Arneth aff013; Philippe Ciais aff014; Delphine Deryng aff015; Peter J. Lawrence aff017; Stefan Olin aff018; Thomas A. M. Pugh aff019; Alex C. Ruane aff003; Xuhui Wang aff014
Působiště autorů:
International Institute for Applied Systems Analysis, Ecosystem Services and Management Program, Laxenburg, Austria
aff001; University of Chicago and ANL Computation Institute, Chicago, Illinois, United States of America
aff002; Columbia University, Center for Climate Systems Research, New York, New York, United States of America
aff003; National Aeronautics and Space Administration Goddard Institute for Space Studies, New York, New York, United States of America
aff004; Potsdam Institute for Climate Impact Research, Member of the Leibniz Association, Potsdam, Germany
aff005; Comenius University in Bratislava, Department of Soil Science, Bratislava, Slovak Republic
aff006; University of Maryland, Department of Geographical Sciences, College Park, Maryland, United States of America
aff007; Texas A&M University, Texas AgriLife Research and Extension, Temple, Texas, United States of America
aff008; Eawag, Swiss Federal Institute of Aquatic Science and Technology, Duebendorf, Switzerland
aff009; University of Natural Resources and Life Sciences, Institute for Sustainable Economic Development, Vienna, Austria
aff010; Soil Science and Conservation Research Institute, National Agricultural and Food Centre, Bratislava, Slovak Republic
aff011; Department of Environmental Sciences, University of Basel, Basel, Switzerland
aff012; Karlsruhe Institute of Technology, IMK-IFU, Garmisch-Partenkirchen, Germany
aff013; Laboratoire des Sciences du Climat et de l’Environnement, Gif-sur-Yvette, France
aff014; Leibniz Centre for Agricultural Landscape Research (ZALF), Müncheberg, Germany
aff015; IRI THESys, Humboldt University of Berlin, Berlin, Germany
aff016; National Center for Atmospheric Research, Earth System Laboratory, Boulder, Colorado, United States of America
aff017; Department of Physical Geography and Ecosystem Science, Lund University, Lund, Sweden
aff018; School of Geography, Earth & Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
aff019; Birmingham Institute of Forest Research, University of Birmingham, Edgbaston, Birmingham, United Kingdom
aff020; Peking University, Sino-French Institute of Earth System Sciences, Beijing, China
aff021
Vyšlo v časopise:
PLoS ONE 14(9)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0221862
Souhrn
Global gridded crop models (GGCMs) combine agronomic or plant growth models with gridded spatial input data to estimate spatially explicit crop yields and agricultural externalities at the global scale. Differences in GGCM outputs arise from the use of different biophysical models, setups, and input data. GGCM ensembles are frequently employed to bracket uncertainties in impact studies without investigating the causes of divergence in outputs. This study explores differences in maize yield estimates from five GGCMs based on the public domain field-scale model Environmental Policy Integrated Climate (EPIC) that participate in the AgMIP Global Gridded Crop Model Intercomparison initiative. Albeit using the same crop model, the GGCMs differ in model version, input data, management assumptions, parameterization, and selection of subroutines affecting crop yield estimates via cultivar distributions, soil attributes, and hydrology among others. The analyses reveal inter-annual yield variability and absolute yield levels in the EPIC-based GGCMs to be highly sensitive to soil parameterization and crop management. All GGCMs show an intermediate performance in reproducing reported yields with a higher skill if a static soil profile is assumed or sufficient plant nutrients are supplied. An in-depth comparison of setup domains for two EPIC-based GGCMs shows that GGCM performance and plant stress responses depend substantially on soil parameters and soil process parameterization, i.e. hydrology and nutrient turnover, indicating that these often neglected domains deserve more scrutiny. For agricultural impact assessments, employing a GGCM ensemble with its widely varying assumptions in setups appears the best solution for coping with uncertainties from lack of comprehensive global data on crop management, cultivar distributions and coefficients for agro-environmental processes. However, the underlying assumptions require systematic specifications to cover representative agricultural systems and environmental conditions. Furthermore, the interlinkage of parameter sensitivity from various domains such as soil parameters, nutrient turnover coefficients, and cultivar specifications highlights that global sensitivity analyses and calibration need to be performed in an integrated manner to avoid bias resulting from disregarded core model domains. Finally, relating evaluations of the EPIC-based GGCMs to a wider ensemble based on individual core models shows that structural differences outweigh in general differences in configurations of GGCMs based on the same model, and that the ensemble mean gains higher skill from the inclusion of structurally different GGCMs. Although the members of the wider ensemble herein do not consider crop-soil-management interactions, their sensitivity to nutrient supply indicates that findings for the EPIC-based sub-ensemble will likely become relevant for other GGCMs with the progressing inclusion of such processes.
Klíčová slova:
Biology and life sciences – Agriculture – Agricultural soil science – Crop science – Crops – Crop management – Agrochemicals – Fertilizers – Organisms – Eukaryota – Plants – Grasses – Maize – Developmental biology – Plant science – Plant growth and development – Ecology and environmental sciences – Soil science – Edaphology – Research and analysis methods – Animal studies – Experimental organism systems – Model organisms – Plant and algal models – Earth sciences – Geomorphology – Erosion
Zdroje
1. Tan G, Shibasaki R. Global estimation of crop productivity and the impacts of global warming by GIS and EPIC integration. Ecological Modelling. 2003;168: 357–370. doi: 10.1016/S0304-3800(03)00146-7
2. Liu J, Folberth C, Yang H, Röckström J, Abbaspour K, Zehnder AJB. A Global and Spatially Explicit Assessment of Climate Change Impacts on Crop Production and Consumptive Water Use. PLOS ONE. 2013;8: e57750. doi: 10.1371/journal.pone.0057750 23460901
3. Balkovič J, van der Velde M, Skalský R, Xiong W, Folberth C, Khabarov N, et al. Global wheat production potentials and management flexibility under the representative concentration pathways. Global and Planetary Change. 2014;122: 107–121. doi: 10.1016/j.gloplacha.2014.08.010
4. Elliott J, Deryng D, Müller C, Frieler K, Konzmann M, Gerten D, et al. Constraints and potentials of future irrigation water availability on agricultural production under climate change. PNAS. 2014;111: 3239–3244. doi: 10.1073/pnas.1222474110 24344283
5. Folberth C, Yang H, Gaiser T, Liu J, Wang X, Williams J, et al. Effects of ecological and conventional agricultural intensification practices on maize yields in sub-Saharan Africa under potential climate change. Environ Res Lett. 2014;9: 044004. doi: 10.1088/1748-9326/9/4/044004
6. Rosenzweig C, Elliott J, Deryng D, Ruane AC, Müller C, Arneth A, et al. Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. PNAS. 2014;111: 3268–3273. doi: 10.1073/pnas.1222463110 24344314
7. Müller C, Elliott J, Chryssanthacopoulos J, Deryng D, Folberth C, Pugh TAM, et al. Implications of climate mitigation for future agricultural production. Environ Res Lett. 2015;10: 125004. doi: 10.1088/1748-9326/10/12/125004
8. Deryng D, Elliott J, Folberth C, Müller C, Pugh TAM, Boote KJ, et al. Regional disparities in the beneficial effects of rising CO2 concentrations on crop water productivity. Nature Climate Change. 2016;6: 786–790. doi: 10.1038/nclimate2995
9. Bondeau A, Smith PC, Zaehle S, Schaphoff S, Lucht W, Cramer W, et al. Modelling the role of agriculture for the 20th century global terrestrial carbon balance. Global Change Biology. 2007;13: 679–706. doi: 10.1111/j.1365-2486.2006.01305.x
10. Liu J, Williams JR, Zehnder AJB, Yang H. GEPIC–modelling wheat yield and crop water productivity with high resolution on a global scale. Agricultural Systems. 2007;94: 478–493. doi: 10.1016/j.agsy.2006.11.019
11. Fader M, Rost S, Müller C, Bondeau A, Gerten D. Virtual water content of temperate cereals and maize: Present and potential future patterns. Journal of Hydrology. 2010;384: 218–231. doi: 10.1016/j.jhydrol.2009.12.011
12. Stehfest E, Heistermann M, Priess JA, Ojima DS, Alcamo J. Simulation of global crop production with the ecosystem model DayCent. Ecological Modelling. 2007;209: 203–219. doi: 10.1016/j.ecolmodel.2007.06.028
13. Liu W, Yang H, Ciais P, Stamm C, Zhao X, Williams JR, et al. Integrative Crop-Soil-Management Modeling to Assess Global Phosphorus Losses from Major Crop Cultivations. Global Biogeochemical Cycles. 2018;32: 1074–1086. doi: 10.1029/2017GB005849
14. Havlík P, Schneider UA, Schmid E, Böttcher H, Fritz S, Skalský R, et al. Global land-use implications of first and second generation biofuel targets. Energy Policy. 2011;39: 5690–5702. doi: 10.1016/j.enpol.2010.03.030
15. Schneider UA, Havlík P, Schmid E, Valin H, Mosnier A, Obersteiner M, et al. Impacts of population growth, economic development, and technical change on global food production and consumption. Agricultural Systems. 2011;104: 204–215. doi: 10.1016/j.agsy.2010.11.003
16. Müller C, Robertson RD. Projecting future crop productivity for global economic modeling. Agricultural Economics. 2014;45: 37–50. doi: 10.1111/agec.12088
17. Nelson GC, Valin H, Sands RD, Havlík P, Ahammad H, Deryng D, et al. Climate change effects on agriculture: Economic responses to biophysical shocks. PNAS. 2014;111: 3274–3279. doi: 10.1073/pnas.1222465110 24344285
18. Asseng S, Ewert F, Rosenzweig C, Jones JW, Hatfield JL, Ruane AC, et al. Uncertainty in simulating wheat yields under climate change. Nature Climate Change. 2013;3: 827–832. doi: 10.1038/nclimate1916
19. Martre P, Wallach D, Asseng S, Ewert F, Jones JW, Rötter RP, et al. Multimodel ensembles of wheat growth: many models are better than one. Global Change Biology. 2015;21: 911–925. doi: 10.1111/gcb.12768 25330243
20. Sándor R, Ehrhardt F, Basso B, Bellocchi G, Bhatia A, Brilli L, et al. C and N models Intercomparison–benchmark and ensemble model estimates for grassland production. Advances in Animal Biosciences. 2016;7: 245–247. doi: 10.1017/S2040470016000297
21. Basso B, Hyndman DW, Kendall AD, Grace PR, Robertson GP. Can Impacts of Climate Change and Agricultural Adaptation Strategies Be Accurately Quantified if Crop Models Are Annually Re-Initialized? PLOS ONE. 2015;10: e0127333. doi: 10.1371/journal.pone.0127333 26043188
22. Basso B, Dumont B, Maestrini B, Shcherbak I, Robertson GP, Porter JR, et al. Soil Organic Carbon and Nitrogen Feedbacks on Crop Yields under Climate Change. ael. 2018;3: 0. doi: 10.2134/ael2018.05.0026
23. Bassu S, Brisson N, Durand J-L, Boote K, Lizaso J, Jones JW, et al. How do various maize crop models vary in their responses to climate change factors? Global Change Biology. 2014;20: 2301–2320. doi: 10.1111/gcb.12520 24395589
24. Rosenzweig C, Jones JW, Hatfield JL, Ruane AC, Boote KJ, Thorburn P, et al. The Agricultural Model Intercomparison and Improvement Project (AgMIP): Protocols and pilot studies. Agricultural and Forest Meteorology. 2013;170: 166–182. doi: 10.1016/j.agrformet.2012.09.011
25. Osborne T, Rose G, Wheeler T. Variation in the global-scale impacts of climate change on crop productivity due to climate model uncertainty and adaptation. Agricultural and Forest Meteorology. 2013;170: 183–194. doi: 10.1016/j.agrformet.2012.07.006
26. Zhang X, Izaurralde RC, Manowitz DH, Sahajpal R, West TO, Thomson AM, et al. Regional scale cropland carbon budgets: Evaluating a geospatial agricultural modeling system using inventory data. Environmental Modelling & Software. 2015;63: 199–216. doi: 10.1016/j.envsoft.2014.10.005
27. Folberth C, Skalský R, Moltchanova E, Balkovič J, Azevedo LB, Obersteiner M, et al. Uncertainty in soil data can outweigh climate impact signals in global crop yield simulations. Nature Communications. 2016;7: 11872. doi: 10.1038/ncomms11872 27323866
28. Waha K, Huth N, Carberry P, Wang E. How model and input uncertainty impact maize yield simulations in West Africa. Environmental Research Letters. 2015;10: 024017. doi: 10.1088/1748-9326/10/2/024017
29. Folberth C, Yang H, Wang X, Abbaspour KC. Impact of input data resolution and extent of harvested areas on crop yield estimates in large-scale agricultural modeling for maize in the USA. Ecological Modelling. 2012;235–236: 8–18. doi: 10.1016/j.ecolmodel.2012.03.035
30. Angulo C, Gaiser T, Rötter RP, Børgesen CD, Hlavinka P, Trnka M, et al. ‘Fingerprints’ of four crop models as affected by soil input data aggregation. European Journal of Agronomy. 2014;61: 35–48. doi: 10.1016/j.eja.2014.07.005
31. Liu W, Yang H, Folberth C, Wang X, Luo Q, Schulin R. Global investigation of impacts of PET methods on simulating crop-water relations for maize. Agricultural and Forest Meteorology. 2016;221: 164–175. doi: 10.1016/j.agrformet.2016.02.017
32. Wang E, Martre P, Zhao Z, Ewert F, Maiorano A, Rötter RP, et al. The uncertainty of crop yield projections is reduced by improved temperature response functions. Nature Plants. 2017;3: 17102. doi: 10.1038/nplants.2017.102 28714956
33. Balkovič J, Skalský R, Folberth C, Khabarov N, Schmid E, Madaras M, et al. Impacts and Uncertainties of +2°C of Climate Change and Soil Degradation on European Crop Calorie Supply. Earth’s Future. 2018;6: 373–395. doi: 10.1002/2017EF000629 29938209
34. Elliott J, Müller C, Deryng D, Chryssanthacopoulos J, Boote KJ, Büchner M, et al. The Global Gridded Crop Model Intercomparison: data and modeling protocols for Phase 1 (v1.0). Geosci Model Dev. 2015;8: 261–277. doi: 10.5194/gmd-8-261-2015
35. Elliott J, Kelly D, Chryssanthacopoulos J, Glotter M, Jhunjhnuwala K, Best N, et al. The parallel system for integrating impact models and sectors (pSIMS). Environmental Modelling & Software. 2014;62: 509–516. doi: 10.1016/j.envsoft.2014.04.008
36. Holzworth DP, Huth NI, deVoil PG, Zurcher EJ, Herrmann NI, McLean G, et al. APSIM–Evolution towards a new generation of agricultural systems simulation. Environmental Modelling & Software. 2014;62: 327–350. doi: 10.1016/j.envsoft.2014.07.009
37. Jones J, Hoogenboom G, Porter CH, Boote KJ, Batchelor WD, Hunt LA, et al. The DSSAT cropping system model. European Journal of Agronomy. 2003;18: 235–265. doi: 10.1016/S1161-0301(02)00107-7
38. Maharjan GR, Prescher A-K, Nendel C, Ewert F, Mboh CM, Gaiser T, et al. Approaches to model the impact of tillage implements on soil physical and nutrient properties in different agro-ecosystem models. Soil and Tillage Research. 2018;180: 210–221. doi: 10.1016/j.still.2018.03.009
39. Lutz F, Herzfeld T, Heinke J, Rolinski S, Schaphoff S, Bloh W von, et al. Simulating the effect of tillage practices with the global ecosystem model LPJmL (version 5.0-tillage). Geoscientific Model Development. 2019;12: 2419–2440. https://doi.org/10.5194/gmd-12-2419-2019
40. Bloh W von, Schaphoff S, Müller C, Rolinski S, Waha K, Zaehle S. Implementing the nitrogen cycle into the dynamic global vegetation, hydrology, and crop growth model LPJmL (version 5.0). Geoscientific Model Development. 2018;11: 2789–2812. https://doi.org/10.5194/gmd-11-2789-2018
41. Olin S, Schurgers G, Lindeskog M, Wårlind D, Smith B, Bodin P, et al. Modelling the response of yields and tissue C: N to changes in atmospheric CO2 and N management in the main wheat regions of western Europe. Biogeosciences. 2015;12: 2489–2515. https://doi.org/10.5194/bg-12-2489-2015
42. Goll DS, Vuichard N, Maignan F, Jornet-Puig A, Sardans J, Violette A, et al. A representation of the phosphorus cycle for ORCHIDEE (revision 4520). Geosci Model Dev. 2017; 26.
43. Hoffmann H, Zhao G, Asseng S, Bindi M, Biernath C, Constantin J, et al. Impact of Spatial Soil and Climate Input Data Aggregation on Regional Yield Simulations. PLOS ONE. 2016;11: e0151782. doi: 10.1371/journal.pone.0151782 27055028
44. Yin Y, Tang Q, Liu X, Zhang X. Water scarcity under various socio-economic pathways and its potential effects on food production in the Yellow River basin. Hydrology and Earth System Sciences. 2017;21: 791–804. doi: 10.5194/hess-21-791-2017
45. Ostberg S, Schewe J, Childers K, Frieler K. Changes in crop yields and their variability at different levels of global warming. Earth System Dynamics. 2018;9: 479–496. https://doi.org/10.5194/esd-9-479-2018
46. Blanc É. Statistical emulators of maize, rice, soybean and wheat yields from global gridded crop models. Agricultural and Forest Meteorology. 2017;236: 145–161. doi: 10.1016/j.agrformet.2016.12.022
47. Leng G. Recent changes in county-level corn yield variability in the United States from observations and crop models. Science of The Total Environment. 2017;607–608: 683–690. doi: 10.1016/j.scitotenv.2017.07.017 28710999
48. Mistry MN, Wing IS, Cian ED. Simulated vs. empirical weather responsiveness of crop yields: US evidence and implications for the agricultural impacts of climate change. Environ Res Lett. 2017;12: 075007. doi: 10.1088/1748-9326/aa788c
49. Müller C, Elliott J, Chryssanthacopoulos J, Arneth A, Balkovic J, Ciais P, et al. Global gridded crop model evaluation: benchmarking, skills, deficiencies and implications. Geosci Model Dev. 2017;10: 1403–1422. doi: 10.5194/gmd-10-1403-2017
50. Müller C, Elliott J, Kelly D, Arneth A, Balkovic J, Ciais P, et al. The Global Gridded Crop Model Intercomparison phase 1 simulation dataset. Scientific Data. 2019;6: 50. doi: 10.1038/s41597-019-0023-8 31068583
51. Sacks WJ, Deryng D, Foley JA, Ramankutty N. Crop planting dates: an analysis of global patterns. Global Ecology and Biogeography. 2010;19: 607–620. doi: 10.1111/j.1466-8238.2010.00551.x
52. Mueller ND, Gerber JS, Johnston M, Ray DK, Ramankutty N, Foley JA. Closing yield gaps through nutrient and water management. Nature. 2012;490: 254–257. doi: 10.1038/nature11420 22932270
53. Williams JR, Jones CA, Kiniry JR, Spanel DA. The EPIC crop growth model. Transactions of the ASAE. 1989;32: 497–0511.
54. Stockle CO, Williams JR, Rosenberg NJ, Jones CA. A method for estimating the direct and climatic effects of rising atmospheric carbon dioxide on growth and yield of crops: Part I—Modification of the EPIC model for climate change analysis. Agricultural Systems. 1992;38: 225–238. doi: 10.1016/0308-521X(92)90067-X
55. Izaurralde RC, Williams JR, McGill WB, Rosenberg NJ, Jakas MCQ. Simulating soil C dynamics with EPIC: Model description and testing against long-term data. Ecological Modelling. 2006;192: 362–384. doi: 10.1016/j.ecolmodel.2005.07.010
56. Izaurralde RC, McGill WB, Williams JR. Development and application of the EPIC model for carbon cycle, greenhouse gas mitigation, and biofuel studies. Managing Agricultural Greenhouse Gases. Elsevier; 2012. pp. 293–308.
57. Kiniry JR, Williams JR, Major DJ, Izaurralde RC, Gassman PW, Morrison M, et al. EPIC model parameters for cereal, oilseed, and forage crops in the northern Great Plains region. Canadian Journal of Plant Science. 1995;75: 679–688.
58. Gaiser T, de Barros I, Sereke F, Lange F-M. Validation and reliability of the EPIC model to simulate maize production in small-holder farming systems in tropical sub-humid West Africa and semi-arid Brazil. Agriculture, Ecosystems & Environment. 2010;135: 318–327. doi: 10.1016/j.agee.2009.10.014
59. Gassman PW, Williams JR, Benson VW, Izaurralde RC, Hauck LM, Jones CA, et al. Historical development and applications of the EPIC and APEX models. 2004 ASAE Annual Meeting. American Society of Agricultural and Biological Engineers; 2004. p. 1. Available: https://www.card.iastate.edu/products/publications/synopsis/?p=763
60. Parton WJ, Ojima DS, Cole CV, Schimel DS. A General Model for Soil Organic Matter Dynamics: Sensitivity to Litter Chemistry, Texture and Management. Quantitative Modeling of Soil Forming Processes. 1994;sssaspecialpubl: 147–167. doi: 10.2136/sssaspecpub39.c9
61. Folberth C, Gaiser T, Abbaspour KC, Schulin R, Yang H. Regionalization of a large-scale crop growth model for sub-Saharan Africa: Model setup, evaluation, and estimation of maize yields. Agriculture, Ecosystems & Environment. 2012;151: 21–33. doi: 10.1016/j.agee.2012.01.026
62. Balkovič J, van der Velde M, Schmid E, Skalský R, Khabarov N, Obersteiner M, et al. Pan-European crop modelling with EPIC: Implementation, up-scaling and regional crop yield validation. Agricultural Systems. 2013;120: 61–75. doi: 10.1016/j.agsy.2013.05.008
63. Xiong W, van der Velde M, Holman IP, Balkovic J, Lin E, Skalský R, et al. Can climate-smart agriculture reverse the recent slowing of rice yield growth in China? Agriculture, Ecosystems & Environment. 2014;196: 125–136. doi: 10.1016/j.agee.2014.06.014
64. Monteith JL. Evaporation and environment. Symp Soc Exp Biol. 1965. p. 4.
65. Hargreaves GH, Samani ZA. Reference crop evapotranspiration from temperature. Applied engineering in agriculture. 1985;1: 96–99.
66. Rawls WJ, Brakensiek DL. Prediction of soil water properties for hydrologic modeling. Watershed management in the eighties. ASCE; 1985. pp. 293–299.
67. Ray DK, Ramankutty N, Mueller ND, West PC, Foley JA. Recent patterns of crop yield growth and stagnation. Nature Communications. 2012;3: 1293. doi: 10.1038/ncomms2296 23250423
68. United Nations Development Programme. Human Development Report 2016: Human Development for Everyone [Internet]. UN; 2017. doi: 10.18356/b6186701-en
69. Weedon GP, Balsamo G, Bellouin N, Gomes S, Best MJ, Viterbo P. The WFDEI meteorological forcing data set: WATCH Forcing Data methodology applied to ERA-Interim reanalysis data. Water Resources Research. 2014;50: 7505–7514. doi: 10.1002/2014WR015638
70. Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, et al. The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Quarterly Journal of the Royal Meteorological Society. 2011;137: 553–597. doi: 10.1002/qj.828
71. Schneider U, Becker A, Finger P, Meyer-Christoffer A, Ziese M, Rudolf B. GPCC’s new land surface precipitation climatology based on quality-controlled in situ data and its role in quantifying the global water cycle. Theor Appl Climatol. 2014;115: 15–40. doi: 10.1007/s00704-013-0860-x
72. Batjes NH. ISRIC-WISE derived soil properties on a 5 by 5 arc minutes global grid. Report 2006/02. Wageningen: ISRIC-WISE derived soil properties on a; 2006.
73. FAO F. Digital Soil Map of the World. FAO, Rome. 1995;
74. Skalský R, Tarasovičová Z, Balkovič J, Schmid E, Fuchs M, Moltchanova E, et al. GEO-BENE global database for bio-physical modeling. GEOBENE project. 2008;
75. Wösten JHM, Genuchten V, Th M. Using Texture and Other Soil Properties to Predict the Unsaturated Soil Hydraulic Functions. Soil Science Society of America Journal. 1988;52: 1762–1770. doi: 10.2136/sssaj1988.03615995005200060045x
76. Schaap MG, Bouten W. Modeling water retention curves of sandy soils using neural networks. Water Resources Research. 1996;32: 3033–3040. doi: 10.1029/96WR02278
77. Potter P, Ramankutty N, Bennett EM, Donner SD. Characterizing the Spatial Patterns of Global Fertilizer Application and Manure Production. Earth Interact. 2010;14: 1–22. doi: 10.1175/2009EI288.1
78. Portmann FT, Siebert S, Döll P. MIRCA2000—Global monthly irrigated and rainfed crop areas around the year 2000: A new high-resolution data set for agricultural and hydrological modeling. Global Biogeochemical Cycles. 2010;24. doi: 10.1029/2008GB003435
79. Waha K, Bussel LGJ van, Müller C, Bondeau A. Climate-driven simulation of global crop sowing dates. Global Ecology and Biogeography. 2012;21: 247–259. doi: 10.1111/j.1466-8238.2011.00678.x
80. Porwollik V, Müller C, Elliott J, Chryssanthacopoulos J, Iizumi T, Ray DK, et al. Spatial and temporal uncertainty of crop yield aggregations. European Journal of Agronomy. 2017;88: 10–21. doi: 10.1016/j.eja.2016.08.006
81. RDevelopment Core Team. R: A language and environment for statistical computing. R foundation for statistical computing Vienna, Austria; 2008.
82. Wickham H. ggplot2: elegant graphics for data analysis. Springer; 2016.
83. Wei T, Simko V. corrplot: Visualization of a correlation matrix. R package version 073. 2013;230: 11.
84. Warnes GR, Bolker B, Bonebakker L, Gentleman R, Liaw WHA, Lumley T, et al. gplots: various R programming tools for plotting data. R package version 3.0. 1. The Comprehensive R Archive Network. 2016;
85. FAO. FAOSTAT statistical database [Internet]. 2016. Available: https://faostat.fao.org
86. Folberth C, Yang H, Gaiser T, Abbaspour KC, Schulin R. Modeling maize yield responses to improvement in nutrient, water and cultivar inputs in sub-Saharan Africa. Agricultural Systems. 2013;119: 22–34. doi: 10.1016/j.agsy.2013.04.002
87. Zhang X, Wu L, Sun N, Ding X, Li J, Wang B, et al. Soil CO2 and N2O Emissions in Maize Growing Season Under Different Fertilizer Regimes in an Upland Red Soil Region of South China. Journal of Integrative Agriculture. 2014;13: 604–614. doi: 10.1016/S2095-3119(13)60718-2
88. Givi J, Prasher SO, Patel RM. Evaluation of pedotransfer functions in predicting the soil water contents at field capacity and wilting point. Agricultural Water Management. 2004;70: 83–96. doi: 10.1016/j.agwat.2004.06.009
89. Baroni G, Facchi A, Gandolfi C, Ortuani B, Horeschi D, van Dam JC. Uncertainty in the determination of soil hydraulic parameters and its influence on the performance of two hydrological models of different complexity. Hydrol Earth Syst Sci. 2010;14: 251–270. doi: 10.5194/hess-14-251-2010
90. Kris Van Looy, Johan Bouma, Michael Herbst, John Koestel, Budiman Minasny, Umakant Mishra, et al. Pedotransfer Functions in Earth System Science: Challenges and Perspectives. Reviews of Geophysics. 2017;55: 1199–1256. doi: 10.1002/2017RG000581
91. Gerik T, Williams J, Francis L, Greiner J, Magre M, Meinardus A, et al. Environmental Policy Integrated Climate Model-User’s Manual Version 0810. Blackland Research and Extension Center, Texas A&M AgriLife, Temple, USA. 2014;
92. Matthews RB, Pilbeam C. Modelling the long-term productivity and soil fertility of maize/millet cropping systems in the mid-hills of Nepal. Agriculture, Ecosystems & Environment. 2005;111: 119–139. doi: 10.1016/j.agee.2005.06.016
93. Xiong W, Holman I, Conway D, Lin E, Li Y. A crop model cross calibration for use in regional climate impacts studies. Ecological Modelling. 2008;213: 365–380. doi: 10.1016/j.ecolmodel.2008.01.005
94. Gavilán P, Lorite IJ, Tornero S, Berengena J. Regional calibration of Hargreaves equation for estimating reference ET in a semiarid environment. Agricultural Water Management. 2006;81: 257–281. doi: 10.1016/j.agwat.2005.05.001
95. Liu W, Yang H, Liu J, Azevedo LB, Wang X, Xu Z, et al. Global assessment of nitrogen losses and trade-offs with yields from major crop cultivations. Science of The Total Environment. 2016;572: 526–537. doi: 10.1016/j.scitotenv.2016.08.093 27552131
96. Frieler K, Schauberger B, Arneth A, Balkovič J, Chryssanthacopoulos J, Deryng D, et al. Understanding the weather signal in national crop-yield variability. Earth’s Future. 2017;5: 605–616. doi: 10.1002/2016EF000525 30377624
97. Ewert F, van Ittersum MK, Heckelei T, Therond O, Bezlepkina I, Andersen E. Scale changes and model linking methods for integrated assessment of agri-environmental systems. Agriculture, Ecosystems & Environment. 2011;142: 6–17. doi: 10.1016/j.agee.2011.05.016
98. Sheahan M, Barrett CB. Ten striking facts about agricultural input use in Sub-Saharan Africa. Food Policy. 2017;67: 12–25. doi: 10.1016/j.foodpol.2016.09.010 28413243
99. Eyshi Rezaei E, Siebert S, Ewert F. Impact of data resolution on heat and drought stress simulated for winter wheat in Germany. European Journal of Agronomy. 2015;65: 69–82. doi: 10.1016/j.eja.2015.02.003
100. Porwollik V, Rolinski S, Heinke J, Müller C. Generating a rule-based global gridded tillage dataset. Earth System Science Data. 2019;11: 823–843. https://doi.org/10.5194/essd-11-823-2019
101. Zheng B, Campbell JB, Serbin G, Galbraith JM. Remote sensing of crop residue and tillage practices: Present capabilities and future prospects. Soil and Tillage Research. 2014;138: 26–34. doi: 10.1016/j.still.2013.12.009
102. Hively WD, Lamb BT, Daughtry CST, Shermeyer J, McCarty GW, Quemada M. Mapping Crop Residue and Tillage Intensity Using WorldView-3 Satellite Shortwave Infrared Residue Indices. Remote Sensing. 2018;10: 1657. doi: 10.3390/rs10101657
103. Tao F, Rötter RP, Palosuo T, Díaz‐Ambrona CGH, Mínguez MI, Semenov MA, et al. Contribution of crop model structure, parameters and climate projections to uncertainty in climate change impact assessments. Global Change Biology. 2018;24: 1291–1307. doi: 10.1111/gcb.14019 29245185
104. Deryng D, Sacks WJ, Barford CC, Ramankutty N. Simulating the effects of climate and agricultural management practices on global crop yield. Global Biogeochemical Cycles. 2011;25. doi: 10.1029/2009GB003765
105. Iizumi T, Yokozawa M, Nishimori M. Parameter estimation and uncertainty analysis of a large-scale crop model for paddy rice: Application of a Bayesian approach. Agricultural and Forest Meteorology. 2009;149: 333–348. doi: 10.1016/j.agrformet.2008.08.015
106. Valade A, Ciais P, Vuichard N, Viovy N, Caubel A, Huth N, et al. Modeling sugarcane yield with a process-based model from site to continental scale: uncertainties arising from model structure and parameter values. Geosci Model Dev. 2014;7: 1225–1245. doi: 10.5194/gmd-7-1225-2014
107. Zhao G, Bryan BA, Song X. Sensitivity and uncertainty analysis of the APSIM-wheat model: Interactions between cultivar, environmental, and management parameters. Ecological Modelling. 2014;279: 1–11. doi: 10.1016/j.ecolmodel.2014.02.003
108. Wang J, Li X, Lu L, Fang F. Parameter sensitivity analysis of crop growth models based on the extended Fourier Amplitude Sensitivity Test method. Environmental Modelling & Software. 2013;48: 171–182. doi: 10.1016/j.envsoft.2013.06.007
109. Liu J. A GIS-based tool for modelling large-scale crop-water relations. Environmental Modelling & Software. 2009;24: 411–422. doi: 10.1016/j.envsoft.2008.08.004
110. Xiong W, Skalský R, Porter CH, Balkovič J, Jones JW, Yang D. Calibration-induced uncertainty of the EPIC model to estimate climate change impact on global maize yield. Journal of Advances in Modeling Earth Systems. 2016;8: 1358–1375. doi: 10.1002/2016MS000625
111. Gbegbelegbe S, Cammarano D, Asseng S, Robertson R, Chung U, Adam M, et al. Baseline simulation for global wheat production with CIMMYT mega-environment specific cultivars. Field Crops Research. 2017;202: 122–135. doi: 10.1016/j.fcr.2016.06.010
112. Hartkamp AD. Maize production environments revisited: a GIS-based approach. CIMMYT; 2001.
113. Porter CH, Villalobos C, Holzworth D, Nelson R, White JW, Athanasiadis IN, et al. Harmonization and translation of crop modeling data to ensure interoperability. Environmental Modelling & Software. 2014;62: 495–508. doi: 10.1016/j.envsoft.2014.09.004
114. Hengl T, Jesus JM de, Heuvelink GBM, Gonzalez MR, Kilibarda M, Blagotić A, et al. SoilGrids250m: Global gridded soil information based on machine learning. PLOS ONE. 2017;12: e0169748. doi: 10.1371/journal.pone.0169748 28207752
115. Tóth B, Weynants M, Pásztor L, Hengl T. 3D soil hydraulic database of Europe at 250 m resolution. Hydrological Processes. 2017;31: 2662–2666. doi: 10.1002/hyp.11203
Článek vyšel v časopise
PLOS One
2019 Číslo 9
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Je libo čepici místo mozkového implantátu?
- Pomůže v budoucnu s triáží na pohotovostech umělá inteligence?
- AI může chirurgům poskytnout cenná data i zpětnou vazbu v reálném čase
- Nová metoda odlišení nádorové tkáně může zpřesnit resekci glioblastomů
Nejčtenější v tomto čísle
- Graviola (Annona muricata) attenuates behavioural alterations and testicular oxidative stress induced by streptozotocin in diabetic rats
- CH(II), a cerebroprotein hydrolysate, exhibits potential neuro-protective effect on Alzheimer’s disease
- Comparison between Aptima Assays (Hologic) and the Allplex STI Essential Assay (Seegene) for the diagnosis of Sexually transmitted infections
- Assessment of glucose-6-phosphate dehydrogenase activity using CareStart G6PD rapid diagnostic test and associated genetic variants in Plasmodium vivax malaria endemic setting in Mauritania