Quantitative magnetic resonance imaging indicates brain tissue alterations in patients after liver transplantation
Autoři:
Lukas Laurids Goede aff001; Henning Pflugrad aff001; Birte Schmitz aff002; Heinrich Lanfermann aff002; Anita Blanka Tryc aff001; Hannelore Barg-Hock aff004; Jürgen Klempnauer aff004; Karin Weissenborn aff001; Xiao-Qi Ding aff002
Působiště autorů:
Department of Neurology, Hannover Medical School, Hannover, Germany
aff001; Institute of Diagnostic and Interventional Neuroradiology, Hannover Medical School, Hannover, Germany
aff002; Integrated Research and Treatment Centre Transplantation (IFB-Tx), Hannover Medical School, Hannover, Germany
aff003; Clinic for Visceral and Transplant Surgery, Hannover Medical School, Hannover, Germany
aff004
Vyšlo v časopise:
PLoS ONE 14(9)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0222934
Souhrn
Purpose
To investigate cerebral microstructural alterations in patients treated with calcineurin inhibitors (CNI) after orthotopic liver transplantation (OLT) using quantitative magnetic resonance imaging (qMRI) and a cross-sectional study design.
Methods
Cerebral qMRI was performed in 85 patients in a median 10 years after OLT compared to 31 healthy controls. Patients were treated with different dosages of CNI or with a CNI-free immunosuppression (CNI-free: n = 19; CNI-low: n = 36; CNI-standard: n = 30). T2-, T2*- and T2’- relaxation times, as well as apparent diffusion coefficient (ADC) and fractional anisotropy (FA) were measured in brain gray and white matter by using the regions of interest method.
Results
In comparison to controls, patients revealed significantly increased T2, T2*, T2’, ADC and reduced FA, predominantly in the frontal white matter, indicating microstructural brain alterations represented by increased free water (increased T2), reduced neuronal metabolism (increased T2’) and a lower degree of spatial organization of the nervous fibers (reduced FA). CNI-low and CNI-free patients showed more alterations than CNI-standard patients. Analysis of their history revealed impairment of kidney function while under standard CNI dose suggesting that these patients may be more vulnerable to toxic CNI side-effects.
Conclusion
Our findings suggest that the individual sensitivity to toxic side effects should be considered when choosing an appropriate immunosuppressive regimen in patients after liver transplantation.
Klíčová slova:
Central nervous system – Diffusion tensor imaging – Immunosuppressives – Kidneys – Liver transplantation – Magnetic resonance imaging – Microstructure – Relaxation time
Zdroje
1. Herzer K, Strassburg CP, Braun F, Engelmann C, Guba M, Lehner F, et al. Selection and use of immunosuppressive therapies after liver transplantation: Current German practice. Clin Transplant. 2016;30: 487–501. doi: 10.1111/ctr.12708 26855333
2. Pillai AA, Levitsky J. Overview of immunosuppression in liver transplantation. World Journal of Gastroenterology. 2009. pp. 4225–4233. doi: 10.3748/wjg.15.4225 19750565
3. Åberg F, Isoniemi H, Höckerstedt K. Long-term results of liver transplantation. Scand J Surg. 2011;100: 14–21. doi: 10.1177/145749691110000104 21482501
4. Bernhardt M, Pflugrad H, Goldbecker A, Barg-Hock H, Knitsch W, Klempnauer J, et al. Central nervous system complications after liver transplantation: common but mostly transient phenomena. Liver Transpl. 2015;21: 224–232. doi: 10.1002/lt.24035 25369566
5. Lewis MB, Howdle PD. Neurologic complications of liver transplantation in adults. Neurology. 2003;61: 1174–8. doi: 10.1212/01.wnl.0000089487.42870.c6 14610116
6. Rompianesi G, Montalti R, Cautero N, De Ruvo N, Stafford A, Bronzoni C, et al. Neurological complications after liver transplantation as a consequence of immunosuppression: univariate and multivariate analysis of risk factors. Transpl Int. 2015;28: 864–9. doi: 10.1111/tri.12564 25790037
7. Mueller AR, Platz K-P, Bechstein W-O, Schattenfroh N, Stoltenburg-Didinger G, Blumhardt G, et al. Neurotoxicity after orthotopic liver transplantation: A comparison between cyclosporine and fk506. Transplantation. 1994;58: 155–170. 7518974
8. García Martínez R, Rovira A, Alonso J, Aymerich FX, Huerga E, Jacas C, et al. A long-term study of changes in the volume of brain ventricles and white matter lesions after successful liver transplantation. Transplantation. 2010;89: 589–594. doi: 10.1097/TP.0b013e3181ca7bb3 20118844
9. Ding XQ, Wittkugel O, Goebell E, Förster AF, Grzyska U, Zeumer H, et al. Clinical applications of quantitative T2 determination: A complementary MRI tool for routine diagnosis of suspected myelination disorders. Eur J Paediatr Neurol. 2008;12: 298–308. doi: 10.1016/j.ejpn.2007.08.012 17964834
10. Ding XQ, Sun Y, Kruse B, Illies T, Zeumer H, Fiehler J, et al. Microstructural callosal abnormalities in normal-appearing brain of children with developmental delay detected with diffusion tensor imaging. Eur Radiol. 2009;19: 1537–1543. doi: 10.1007/s00330-009-1296-7 19184035
11. Ding XQ, Fiehler J, Kohlschütter B, Wittkugel O, Grzyska U, Zeumer H, et al. MRI abnormalities in normal-appearing brain tissue of treated adult PKU patients. J Magn Reson Imaging. 2008;27: 998–1004. doi: 10.1002/jmri.21289 18425822
12. Leppert IR, Almli CR, McKinstry RC, Mulkern R V., Pierpaoli C, Rivkin MJ, et al. T2 relaxometry of normal pediatric brain development. J Magn Reson Imaging. 2009;29: 258–267. doi: 10.1002/jmri.21646 19161173
13. Weissenborn K, Bültmann E, Donnerstag F, Giesemann AM, Götz F, Worthmann H, et al. Quantitative MRI shows cerebral microstructural damage in hemolytic-uremic syndrome patients with severe neurological symptoms but no changes in conventional MRI. Neuroradiology. 2013;55: 819–825. doi: 10.1007/s00234-013-1176-3 23559401
14. Herynek V, Wagnerová D, Hejlová I, Dezortová M, Hájek M. Changes in the brain during long-term follow-up after liver transplantation. J Magn Reson Imaging. 2012;35: 1332–7. doi: 10.1002/jmri.23599 22315008
15. Pflugrad H, Schrader A-K, Tryc AB, Ding X-Q, Lanfermann H, Jäckel E, et al. Longterm calcineurin inhibitor therapy and brain function in patients after liver transplantation. Liver Transplant. 2018;24: 56–66. doi: 10.1002/lt.24984 29156491
16. Randolph C, Tierney MC, Mohr E, Chase TN. The Repeatable Battery for the Assessment of Neuropsychological Status (RBANS): Preliminary Clinical Validity. J Clin Exp Neuropsychol (Neuropsychology, Dev Cogn Sect A). 1998;20: 310–319. doi: 10.1076/jcen.20.3.310.823 9845158
17. Goldbecker A, Weissenborn K, Shahrezaei GH, Afshar K, Rümke S, Barg-Hock H, et al. Comparison of the most favoured methods for the diagnosis of hepatic encephalopathy in liver transplantation candidates. Gut. 2013;62: 1497–1504. doi: 10.1136/gutjnl-2012-303262 23297006
18. Mooney S, Hasssanein TI, Hilsabeck RC, Ziegler EA, Carlson M, Maron LM, et al. Utility of the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) in patients with end-stage liver disease awaiting liver transplant. Arch Clin Neuropsychol. 2007;22: 175–186. doi: 10.1016/j.acn.2006.12.005 17280813
19. Eylers V V, Maudsley AA, Bronzlik P, Dellani PR, Lanfermann H, Ding XQ. Detection of normal aging effects on human brain metabolite concentrations and microstructure with whole-brain MR spectroscopic imaging and quantitative MR imaging. AJNR Am J Neuroradiol. 2016;37: 447–454. doi: 10.3174/ajnr.A4557 26564440
20. Abràmoff MD, Magalhães PJ, Ram SJ. Image processing with imageJ. Biophotonics International. 2004. pp. 36–41. doi: 10.1117/1.3589100 21721809
21. Howell DC. Statistical Methods for Psychology. 8th ed. The Statistician. Belmont: Wadsworth Publishing Co Inc; 2011. doi: 10.2307/2348956
22. Ding X-Q, Kucinski T, Wittkugel O, Goebell E, Grzyska U, Görg M, et al. Normal brain maturation characterized with age-related T2 relaxation times: an attempt to develop a quantitative imaging measure for clinical use. Invest Radiol. 2004;39: 740–746. doi: 10.1097/00004424-200412000-00005 15550835
23. Holland BA, Haas DK, Norman D, Brant-Zawadzki M, Newton TH. MRI of normal brain maturation. AJNR Am J Neuroradiol. 1986;7: 201–208. 3082150
24. Dawe RJ, Bennett DA, Schneider JA, Leurgans SE, Kotrotsou A, Boyle PA, et al. Ex vivo T2 relaxation: Associations with age-related neuropathology and cognition. Neurobiol Aging. 2014;35: 1549–1561. doi: 10.1016/j.neurobiolaging.2014.01.144 24582637
25. Wagner M, Jurcoane A, Volz S, Magerkurth J, Zanella FE, Neumann-Haefelin T, et al. Age-related changes of cerebral autoregulation: New insights with quantitative T2′-mapping and pulsed arterial spin-labeling MR imaging. AJNR Am J Neuroradiol. 2012;33: 2081–2087. doi: 10.3174/ajnr.A3138 22700750
26. Wagner M, Magerkurth J, Volz S, Jurcoane A, Singer OC, Neumann-Haefelin T, et al. T2’- and PASL-based perfusion mapping at 3 Tesla: Influence of oxygen-ventilation on cerebral autoregulation. J Magn Reson Imaging. 2012;36: 1347–1352. doi: 10.1002/jmri.23777 22911952
27. Holst B, Siemonsen S, Finsterbusch J, Bester M, Schippling S, Martin R, et al. T2’ imaging indicates decreased tissue metabolism in frontal white matter of MS patients. Mult Scler. 2009;15: 701–7. doi: 10.1177/1352458509103713 19482862
28. Blinkenberg M, Jensen C V, Holm S, Paulson OB, Sørensen PS. A longitudinal study of cerebral glucose metabolism, MRI, and disability in patients with MS. Neurology. 1999;53: 149–153. doi: 10.1212/wnl.53.1.149 10408551
29. Bammer R. Basic principles of diffusion-weighted imaging. Eur J Radiol. 2003;45: 169–184. S0720048X02003030 [pii] doi: 10.1016/s0720-048x(02)00303-0 12595101
30. Lyng H, Haraldseth O, Rofstad EK. Measurement of cell density and necrotic fraction in human melanoma xenografts by diffusion weighted magnetic resonance imaging. Magn Reson Med. 2000;43: 828–836. doi: 10.1002/1522-2594(200006)43:6<828::aid-mrm8>3.0.co;2-p 10861877
31. Loubinoux I, Volk A, Borredon J, Guirimand S, Tiffon B, Seylaz J, et al. Spreading of vasogenic edema and cytotoxic edema assessed by quantitative diffusion and T2 magnetic resonance imaging. Stroke. 1997;28: 419–426. doi: 10.1161/01.str.28.2.419 9040700
32. Dogan F, Dokumaci D Sen, Yildirim A, Bozdogan E, Boyaci FN, Koca B, et al. Brain diffusion changes in Eisenmenger syndrome. Br J Radiol. 2016;89: 20151007. doi: 10.1259/bjr.20151007 27767324
33. Filippi M, Cercignani M, Inglese M, Horsfield MA, Comi G. Diffusion tensor magnetic resonance imaging in multiple sclerosis. Neurology. 2001;56: 304–311. doi: 10.1212/wnl.56.3.304 11171893
Článek vyšel v časopise
PLOS One
2019 Číslo 9
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Je libo čepici místo mozkového implantátu?
- Pomůže v budoucnu s triáží na pohotovostech umělá inteligence?
- AI může chirurgům poskytnout cenná data i zpětnou vazbu v reálném čase
- Nová metoda odlišení nádorové tkáně může zpřesnit resekci glioblastomů
Nejčtenější v tomto čísle
- Graviola (Annona muricata) attenuates behavioural alterations and testicular oxidative stress induced by streptozotocin in diabetic rats
- CH(II), a cerebroprotein hydrolysate, exhibits potential neuro-protective effect on Alzheimer’s disease
- Comparison between Aptima Assays (Hologic) and the Allplex STI Essential Assay (Seegene) for the diagnosis of Sexually transmitted infections
- Assessment of glucose-6-phosphate dehydrogenase activity using CareStart G6PD rapid diagnostic test and associated genetic variants in Plasmodium vivax malaria endemic setting in Mauritania
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy