Improving the production of podophyllotoxin in hairy roots of Hyptis suaveolens induced from regenerated plantlets
Autoři:
Crescencio Bazaldúa aff001; Alexandre Cardoso-Taketa aff002; Gabriela Trejo-Tapia aff001; Brenda Camacho-Diaz aff001; Jesús Arellano aff003; Elsa Ventura-Zapata aff001; María Luisa Villarreal aff002
Působiště autorů:
Departamento de Biotecnología, Centro de Desarrollo de Productos Bióticos, Instituto Politécnico Nacional, Yautepec, Morelos, México
aff001; Laboratorio de Plantas Medicinales, Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, México
aff002; Laboratorio de Botánica Estructural, Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, México
aff003
Vyšlo v časopise:
PLoS ONE 14(9)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0222464
Souhrn
Ten Hyptis suaveolens hairy root lines were established by infecting nodal explants with K599+pGus-GFP+ and ATCC15834+pTDT strains from Agrobacterium rhizogenes. Genetic transformation was confirmed by epifluorescence and plagiotropic hairy root growth in absence of growth regulators. Cytotoxicity was determined using the sulforhodamine B method, and the production of podophyllotoxin (PTOX) was measured by high performance thin layer chromatography scanning. Through these methodologies, HsTD10 was identified as the hairy root line with the highest cytotoxicity and PTOX production, which was corroborated by liquid chromatography-mass spectrometry and micrOTOF-Q II. A suspension culture of HsTD10 was established in which PTOX and carbohydrate consumption during growth kinetics were quantified by high-performance liquid chromatography. Procedures to increase the production and retrieval of PTOX in the HsTD10 line included selection of culture medium, addition of thiamine, and modification of the PTOX extraction method. The best combination of these variables was MS medium at 75% of its components with the addition of 2 mg L-1 of thiamine, extraction with methanol-dichloromethane, and sonication at 40 ± 5°C. During kinetics, growth-associated PTOX accumulation was observed. The specific growth rate (μ) was 0.11 d-1. The highest concentration of PTOX obtained with HsTD10 (5.6 mg g-1 DW) was 100 times higher than that reported for roots of wild plants and 56 times higher than that for in vitro nontransformed roots of H. suaveolens.
Klíčová slova:
Biology and life sciences – Anatomy – Integumentary system – Hair – Organisms – Bacteria – Agrobacteria – Microbiology – Plant microbiology – Plant science – Medicine and health sciences – Physical sciences – Chemistry – Chemical compounds – Organic compounds – Vitamins – B vitamins – Thiamine – Carbohydrates – Organic chemistry – Analytical chemistry – Mass spectrometry – Liquid chromatography-mass spectrometry – Research and analysis methods – Chromatographic techniques – Liquid chromatography – High performance liquid chromatography – Biological cultures – Suspension cultures – Spectrum analysis techniques – Specimen preparation and treatment – Mechanical treatment of specimens – Sonication
Zdroje
1. Giri A, Narasu ML. Production of podophyllotoxin from Podophyllum hexandrum: a potential natural product for clinically useful anticancer drugs. Cytotechnol. 2000;34:17–26. doi: 10.1023/A:1008138230896 19003377
2. Arroo RRJ, Alfermann AW, Medarde M, Petersen M, Pras N, Woolley JG. Plant cell factories as a source for anti-cancer lignans. Phytochem Rev. 2002;1(1):27–35. doi: 10.1023/A:1015824000904
3. Alam A, Naik PK, Mishra GP. Congruence of RAPD and ISSR markers for evaluation of genomic relationship among 28 populations of Podophyllum hexandrum Royle from Himachal Pradesh, India. Turk J Bot. 2009;33:1–12. doi: 10.3906/bot-0711-10
4. Moraes RM, Burandt Ch, Ganzera M, Li X, Khan I, Canel C. The American mayapple revisited–Podophyllum peltatum- still a potential cash crop? Econ Bot. 2000;54(4):471–76.
5. Renouard S, Lopez T, Hendrawati O, Dupre P, Doussot J, Falguieres A, et al. Podophyllotoxin and deoxypodophyllotoxin in Juniperus bermudiana and 12 other Juniperus species: Optimization of extraction, method validation, and quantification. J Agric Food Chem. 2011;59:8101–07. doi: 10.1021/jf201410p 21702435
6. Bedir E, Khan I, Moraes RM. Bioprospecting for podophyllotoxin In: Trends in New Crops and New Uses; Janick J. and Whipkey A., ASHS Press; Alexandria, VA, USA. 2002 pp 545–49. ISBN 0-970756-5-5.
7. Wink M, Alfermann AW, Franke R, Wetterauer B, Distl M, Windhövel J, et al. Sustainable bioproduction of phytochemicals by plant in vitro cultures: Anticancer agents. Plant Gen Res.2005;3(2):90–100. doi: 10.1079/PGR200575
8. Ahmad R, Sharma VK, Rai AK, Shivananda RD, Shivananda BG. Production of lignans in callus culture of Podophyllum hexandrum. Trop J Pharm Res. 2007;6(4):803–08. www.bioline.org.br/pdf?pr07022.
9. Anbazhagan VR, Ahn CH, Harada E, Kim YS, Choi YE. Podophyllotoxin production via cell and adventitious root cultures of Podophyllum peltatum. In Vitro Cell Dev Biol-Plant. 2008;44:494–501. doi: 10.1007/s11627-008-9134-1
10. Farkya S, Bisaria VS. Exogenous hormones affecting morphology and biosynthetic potential of hairy root line (LYR2i) of Linum album. J Biosci Bioeng. 2008;105(2):140–6. doi: 10.1263/jbb.105.140 18343341
11. Baldi A, Srivastava AK, Bisaria VS. Improved podophyllotoxin production by transformed cultures of Linum album. Biotechnol J. 2008;3:1256–63. doi: 10.1002/biot.200800173 18932162
12. Cong LH, Dauwe R, Lequart M, Vinchon S, Renouard S, Fliniaux O, et al. Kinetics of glucosylated and non-glucosylated aryltetralin lignans in Linum hairy root cultures. Phytochemistry. 2015;115(1):70–8. doi: 10.1016/J.PHYTOCHEM.2015.01.001
13. Renouard S, Corbin C, Drouet S, Medvedec B, Doussot J, Colas C, et al. Investigation of Linum flavum (L.) hairy root cultures for the production of anticancer aryltetralin lignans. Int J Mol Sci. 2018;19(4):990. doi: 10.3390/ijms19040990
14. Prince SP, Ram RK, Anurag C, Dinesh G, Sharma VK. Hyptis suaveolens (L.) Poit.: A phyto pharmacological review. Int J Chem Pharm Sci. 2013;4:1–11. www.researchgate.net/publication/255982083.
15. Lautié E, Quintero R, Fliniaux MA, Villarreal ML. Selection methodology with scoring system: Application to Mexican plants producing podophyllotoxin related lignans. J Ethnopharmacol. 2008;120:402–12. doi: 10.1016/j.jep.2008.09.014 18930796
16. Velóz RA, Cardoso-Taketa A, Villarreal ML. Production of podophyllotoxin from roots and plantlets of Hyptis suaveolens cultivated in vitro. Pharmacogn Res. 2013;5(2):93–102. doi: 10.4103/0974-8490.110538 23798883
17. Bazaldúa C, Cardoso-Taketa A, Arellano J, Camacho-Diaz B, Ventura-Zapata E, Villarreal ML. Podophyllotoxin-like lignans production through hairy roots of Hyptis suaveolens. J Chem Biol Phy Sci. 2014;4(5):37–47. www.researchgate.net/publication/271827761.
18. Murashige T, Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant. 1962;15:473–97. doi: 10.1111/j.1399-3054.1962.tb08052.x
19. Koulman A, Kubbinga ME, Batterman S, Woerdenbag HJ, Pras N, Woolley JG, et al. A phytochemical study of lignans in whole plants and cell suspension cultures of Anthriscus sylvestris. Planta Med. 2003;69(8):733–8. doi: 10.1055/s-2003-42776 14531024
20. Kamal A, Singh M, Ahmad FJ, Saleem K, Ahmad S. A validated HPTLC method for the quantification of podophyllotoxin in Podophyllum hexandrum and etoposide in marketed formulation. Arab J Chem. 2017;10:2539–46. doi: org/10.1016/j.arabjc.2013.09.027
21. Vanicha V, Kanyawim K. Sulforhodamine B colorimetric assay for cytotoxicity screening. Nat Protoc. 2006;1(3):1112–16. doi: 10.1038/nprot.2006.179 17406391
22. John Boik. Natural compounds in cancer therapy. Oregon Medical Press, Princeton, MN, USA. 2001.
23. Pubchem.ncbi—Podophyllotoxin. Chemical and physical properties: Spectral properties, MS-MS. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/podophyllotoxin#section=MS-MS (accessed on 18 October 2018).
24. Borges GM, Destrade BR, Meneses RS, 5. Gómez KR, Malaurie B, Hamon P, et al. Optimization of a culture medium for micropropagated plants of Dioscorea alata L. Rev Colomb Biotecnol. 2011;13(2):221–8. Spanish.
25. Espinosa RA, Salas HL, González PO, Silva PJJ. Empleo de ácido abscísico, manitol y la disminución de la concentración de las sales del medio de cultivo en la conservación in vitro de Ipomoea batatas. Biotecnol Veg. 2002;2(1):39–42. https://revista.ibp.co.cu/index.php/BV/rt/printerFriendly/128/html Spanish.
26. Jiménez-Mariña L, Silva-Pupo JJ, Borges-García M, Fonseca-Arias M. Conservación in vitro del cultivo de clavel español (Dianthus caryophyllus L.) a partir de sales minerales. Agron Mesoam. 2016;27(1):177–81. doi: org/10.15517/am.v27i1.2189 Spanish.
27. Ooi CT, Syahida A, Stanslas J, Maziah M. Efficiency of different Agrobacterium rhizogenes strains on hairy roots induction in Solanum mammosum. World J Microbiol Biotechnol. 2013;29(3):421–30. doi: 10.1007/s11274-012-1194-z 23090845
28. Thilip C, Raju SC, Varutharaju K, Aslam A, Shajahan A. Improved Agrobacterium rhizogenes-mediated hairy root culture system of Withania somnifera (L.) Dunal using sonication and heat treatment. 3 Biotech. 2015;5(6):949–56. doi: 10.1007/s13205-015-0297-2 28324399
29. Chen G, Song F, Xiong X, Peng X. Fluorescent nanosensors based on fluorescence resonance energy transfer (FRET). Ind Eng Chem Res. 2013;52:11228−45. doi: 10.1021/ie303485n
30. Samadi A, Jafari M, Nejhad NM, Hossenian F. Podophyllotoxin and 6-methoxy podophyllotoxin production in hairy root cultures of Linum mucronatum ssp. Mucronatum. Pharmacogn Mag. 2014;10(38):154–60. doi: 10.4103/0973-1296.131027 24914281
31. Vasilev NP, Ionkova I. Cytotoxic activity of extracts from Linum cell cultures. Fitoterapia 2005;76:50–3. doi: 10.1016/j.fitote.2004.10.008 15664462
32. Gang RD, Kasahara H, Zhi-Qiang X, Mijnsbrugge VK, Bauw G, Boerjan W, et al. Evolution of plant defense mechanisms relationships of phenylcoumaran benzylic ether reductases to pinoresinol-lariciresinol and isoflavone reductases. J Biol Chem. 1999;274(11):7516–27. doi: 10.1074/jbc.274.11.7516 10066819
33. Dixon RA, Achnine L, Kota P, Chang-Jun L, Srinivasa RMS, Liangjang W. The phenylpropanoid pathway and plant defense—a genomics perspective. Molec Plant Pathol. 2002;3(5):371–90. doi: 10.1046/j.1364-3703.2002.00131.x 20569344
34. Hano C, Addi M, Bensaddek L, Crônier D, Baltora-Rosset S, Doussot J, et al. Differential accumulation of monolignol-derived compounds in elicited flax (Linum usitatissimum) cell suspension cultures. Planta. 2006;223(5):975–89. http://www.jstor.org/stable/23389388. doi: 10.1007/s00425-005-0156-1 16292660
35. Boubakri H, Poutaraud A, Ali WM, Clayeux C, Baltenweck-Guyot R, Steyer D, et al. Thiamine modulates metabolism of the phenylpropanoid pathway leading to enhanced resistance to Plasmopara viticola in grapevine. BMC Plant Biol 2013;13:31. doi: 10.1186/1471-2229-13-31 23442597
36. Abdel-Monaim MF. Role of riboflavin and thiamine in induced resistance against charcoal rot disease of soybean. Afr J Biotechnol. 2011;10(53):10842–55. doi: 10.5897/AJB11.253
37. Ahn IP, Kim S, Lee YH. Vitamin B1 functions as an activator of plant disease resistance. Plant Physiol. 2005;138:1505–15. doi: 10.1104/pp.104.058693 15980201
38. Zhou J, Sun A, Xing D. Modulation of cellular redox status by thiamine-activated NADPH oxidase confers Arabidopsis resistance to Sclerotinia sclerotiorum. J Exp Bot. 2013;64(11):3261–72. doi: 10.1093/jxb/ert166 23814275
39. Nader BL, Cardoso-Taketa AT, Pereda-Miranda R, Villarreal ML. Production of triterpenoids in liquid-cultivated hairy roots of Galphimia glauca. Planta Med. 2006;72:842–4. doi: 10.1055/s-2006-931601 16732534
40. Caspeta L, Nieto I, Zamilpa A, Alvarez L, Quintero R, Villarreal ML. Solanum chrysotrichum hairy root cultures: characterization, scale-up and production of five antifungal saponins for human use. Planta Med. 2005;71:1084–7. doi: 10.1055/s-2005-873170 16320218
41. Seidel V, Windhövel J, Eaton G, Alfermann AW, Arroo RRJ, Medarde M, et al. Biosynthesis of podophyllotoxin in Linum album cell cultures. Planta. 2002;215(6):1031–9. doi: 10.1007/s00425-002-0834-1 12355164
42. Chattopadhyay S, Srivastava A, Bhojwani S, Bisaria VS. Development of suspension culture of Podophyllum hexandrum for production of podophyllotoxin. Biotechnol Lett. 2001;23(24):2063–6. doi: 10.1023/A:1013704116860
43. Hammouri MK, Ereifej KI, Shibli RA, Al-Karaki GN. Quantitative analysis of fructose fate in a plant fermentation system. J Agric Food Chem. 1998;46(4):1428−32. doi: 10.1021/jf970437z
44. Shimon-Kerner N, Mills D, Merchuk JC. Sugar utilization and invertase activity in hairy-root and cell-suspension cultures of Symphytum officinale. Plant Cell Tissue Organ Cult. 2000;62(2):89–94.
45. Mohagheghzadeh A, Hemmati S, Alfermann AW. Quantification of aryltetralin lignans in Linum album organs and in vitro cultures. Iran J Pharm Sci. 2006:2(1):47–56. www.ijps.ir/article_1909_451.html.
Článek vyšel v časopise
PLOS One
2019 Číslo 9
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Je libo čepici místo mozkového implantátu?
- Pomůže v budoucnu s triáží na pohotovostech umělá inteligence?
- AI může chirurgům poskytnout cenná data i zpětnou vazbu v reálném čase
- Nová metoda odlišení nádorové tkáně může zpřesnit resekci glioblastomů
Nejčtenější v tomto čísle
- Graviola (Annona muricata) attenuates behavioural alterations and testicular oxidative stress induced by streptozotocin in diabetic rats
- CH(II), a cerebroprotein hydrolysate, exhibits potential neuro-protective effect on Alzheimer’s disease
- Comparison between Aptima Assays (Hologic) and the Allplex STI Essential Assay (Seegene) for the diagnosis of Sexually transmitted infections
- Assessment of glucose-6-phosphate dehydrogenase activity using CareStart G6PD rapid diagnostic test and associated genetic variants in Plasmodium vivax malaria endemic setting in Mauritania
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy