Therapeutic efficacy of equine botulism heptavalent antitoxin against all seven botulinum neurotoxins in symptomatic guinea pigs
Autoři:
Douglas Barker aff001; Karen T. Gillum aff002; Nancy A. Niemuth aff002; Shantha Kodihalli aff001
Působiště autorů:
Research and Development, Emergent BioSolutions Canada Inc., Winnipeg, Manitoba, Canada
aff001; Battelle Biomedical Research Center, West Jefferson, Columbus, Ohio, United States of America
aff002
Vyšlo v časopise:
PLoS ONE 14(9)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0222670
Souhrn
Botulism neurotoxins are highly toxic and are potential agents for bioterrorism. The development of effective therapy is essential to counter the possible use of these toxins in military and bioterrorism scenarios, and to provide treatment in cases of natural intoxication. Guinea pigs were intoxicated with a lethal dose of botulinum neurotoxin serotypes A, B, C, D, E, F or G, and at onset of the clinical disease intoxicated animals were treated with either BAT® [Botulism Antitoxin Heptavalent (A, B, C, D, E, F, G)–(Equine)] or placebo. BAT product treatment significantly (p<0.0001) enhanced survival compared to placebo for all botulinum neurotoxin serotypes and arrested or mitigated the progression of clinical signs of botulism intoxication. These results demonstrated the therapeutic efficacy of BAT product in guinea pigs and provided supporting evidence of effectiveness for licensure of BAT product under FDA 21 CFR Part 601 (Subpart H Animal Rule) as a therapeutic for botulism intoxication to serotypes A, B, C, D, E, F or G in adults and pediatric patients.
Klíčová slova:
Biology and life sciences – Toxicology – Toxic agents – Toxins – Bacterial toxins – Botulinum toxin – Neurotoxins – Neurotoxicology – Antitoxins – Organisms – Eukaryota – Animals – Vertebrates – Amniotes – Mammals – Rodents – Guinea pigs – Medicine and health sciences – Pathology and laboratory medicine – Mental health and psychiatry – Substance-related disorders – Intoxication – Public and occupational health – Infectious diseases – Bacterial diseases – Botulism – Euthanasia – Research and analysis methods – Animal studies – Experimental organism systems – Animal models
Zdroje
1. Arnon SS, Schechter R, Inglesby TV, Henderson DA, Bartlett JG, Ascher MS et al. Botulinum toxin as a biological weapon: medical and public health management. JAMA 2001; 285:1059–1070. doi: 10.1001/jama.285.8.1059 11209178
2. Pirazzini M, Rossetto O, Eleopra R, Montecucco C. Botulinum neurotoxins: biology pharmacology and toxicology. Pharmacological reviews 2017; 69:200–235. doi: 10.1124/pr.116.012658 28356439
3. Rusnak JM, Smith LA. Botulinum neurotoxin vaccines: Past history and recent developments. Hum Vaccin 2009; 5:794–805. doi: 10.4161/hv.9420 19684478
4. Simpson LL. Botulinum Toxin. In: Barrett ADTand Stanberry LR, editors. Vaccines for Biodefense and Emerging and Neglected Diseases. New York: Academic Press; 2009. pp. 891–917.
5. Centers for Disease Control and Prevention (CDC). Botulism Annual Summary, 2017. Atlanta, Gerogia: U.S. Department of Health and Human Services, CDC, 2019.
6. Gangarosa EJ, Donadio JA, Armstrong RW, Meyer KF, Brachman PS, Dowell VR. Botulism in the United States 1899–1969. Am J Epidemiol 1971; 93:93–101. doi: 10.1093/oxfordjournals.aje.a121239 4925448
7. Shapiro RL, Hatheway C, Swerdlow DL. Botulism in the United States: a clinical and epidemiologic review. Ann Intern Med 1998; 129:221–228. doi: 10.7326/0003-4819-129-3-199808010-00011 9696731
8. Dembek ZF, Smith LA, Rusnak JM. Botulism: cause, effects, diagnosis, clinical and laboratory identification, and treatment modalities. Disaster Medicine and Public Health Preparedness 2007; 1(2):122–134. doi: 10.1097/DMP.0b013e318158c5fd 18388640
9. Demarchi J, Mourgues C, Orio J, Prevot AR. [Existence of type D botulism in man]. Bull Acad Natl Med 1958; 142:580–582. 13560962
10. Koenig MG, Drutz DJ, Mushlin A.I, Schaffner W, Rogers DE. Type B botulism in man. Am J Med 1967; 42:208–219. doi: 10.1016/0002-9343(67)90020-4 6018532
11. Mann JM, Martin S, Hoffman R, Marrazzo S. Patient recovery from type A botulism: morbidity assessment following a large outbreak. Am J Public Health 1981; 71:266–269. doi: 10.2105/ajph.71.3.266 7468858
12. McCroskey LM, Hatheway CL, Woodruff BA, Greenberg JA, Jurgenson P. Type F botulism due to neurotoxigenic Clostridium baratii from an unknown source in an adult. J Clin Microbiol 1991; 29:2618–2620. 1774272
13. Oguma K, Yokota K, Hayashi S, Takeshi K, Kumagai M, Itoh N et al. Infant botulism due to Clostridium botulinum type C toxin. Lancet 1990; 336:1449–1450. doi: 10.1016/0140-6736(90)93157-k
14. Seals JE, Snyder JD, Edell TA, Hatheway CL, Johnson CJ, Swanson RC et al. Restaurant-associated type A botulism: transmission by potato salad. Am J Epidemiol 1981; 113:436–444. doi: 10.1093/oxfordjournals.aje.a113111 7010999
15. Botulism Sobel J. Clinical infectious diseases: an official publication of the Infectious Diseases Society of America 2005; 41:1167–1173. doi: 10.1086/444507
16. Sonnabend O, Sonnabend W, Heinzle R, Sigrist T, Dirnhofer R, Krech U. Isolation of Clostridium botulinum type G and identification of type G botulinal toxin in humans: report of five sudden unexpected deaths. J Infect Dis 1981; 143:22–27. doi: 10.1093/infdis/143.1.22 7012244
17. Telzak EE, Bell EP, Kautter DA, Crowell L, Budnick LD, Morse DL et al. An international outbreak of type E botulism due to uneviscerated fish. J Infect Dis 1990; 161:340–342. doi: 10.1093/infdis/161.2.340 2405071
18. Terranova W, Breman JG, Locey RP, Speck S. Botulism type B: epidemiologic aspects of an extensive outbreak. Am J Epidemiol 1978; 108:150–156. doi: 10.1093/oxfordjournals.aje.a112599 707476
19. Townes JM, Cieslak PR, Hatheway CL, Solomon HM, Holloway JT, Baker MP et al. An outbreak of type A botulism associated with a commercial cheese sauce. Ann Intern Med 1996; 125:558–563. doi: 10.7326/0003-4819-125-7-199610010-00004 8815754
20. Weber JT, Hibbs RG Jr, Darwish A, Mishu B, Corwin AL, Rakha M et al. A massive outbreak of type E botulism associated with traditional salted fish in Cairo. J Infect Dis 1993; 167:451–454. doi: 10.1093/infdis/167.2.451 8421179
21. Emanuel A, Qiu H, Barker D, Takla T, Gillum K, Neimuth N et al. Efficacy of equine botulism antitoxin in botulism poisoning in a guinea pig model. PLoS One 2018; 14(1):e0209019. doi: 10.1371/journal.pone.0209019 30633746
22. Cardella MA. Botulinum Toxoids. In: Lewis KH editor. Botulism: Proceedings of a Symposium. Washington, DC: Government Printing Office: PHS Publication; 1964. pp. 113–130.
23. Gelzleichter TR, Myers MA, Menton RG, Niemuth NA, Matthews MC, Langford M.J. Protection against botulinum toxins provided by passive immunization with botulinum human immune globulin: evaluation using an inhalation model. J Appl Toxicol 1999; 19 Suppl 1:S35–38.
24. Metzger JF, Lewis GE Jr. Human-derived immune globulins for the treatment of botulism. Rev Infect Dis 1979; 1:689–692. doi: 10.1093/clinids/1.4.689 399376
25. Kodihalli S, Emanuel A, Takla T, Hua Y, Hobbs C, LeClaire R et al. Therapeutic efficacy of equine botulism antitoxin in Rhesus macaques. PLoS One 2017; 12:e0186892. doi: 10.1371/journal.pone.0186892 29166654
26. National Research Council (US) Institute for Laboratory Animal Research. Guide for the Care and Use of Laboratory Animals. Washington, DC: National Academies Press (US); 1996.
27. Simpson LL. Identification of the major steps in botulinum toxin action. Annu Rev Pharmacol Toxicol 2004; 44:167–193. doi: 10.1146/annurev.pharmtox.44.101802.121554 14744243
28. FDA. Guidance for Industry Estimating the maximum safe starting dose in initial clinical trials for therapeutics in adult healthy volunteers. US Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER) Center for Biologics Evaluation and Research (CBER); 2005. Available from: https://www.fda.gov/media/72309/download. Cited 20 June 2019.
29. FDA. Product Development Under the Animal Rule Guidance for Industry. US Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER) Center for Biologics Evaluation and Research (CBER); 2015. Available from: https://www.fda.gov/media/88625/download. Cited 20 June 2019.
30. Ciccarelli AS, Whaley DN, McCroskey LM, Gimenez DF, Dowell VR Jr, Hatheway CL. Cultural and physiological characteristics of Clostridium botulinum type G and the susceptibility of certain animals to its toxin. Appl Environ Microbiol 1977; 34:843–848. 74236
31. Harvey SM, Sturgeon J, Dassey DE. Botulism due to Clostridium baratii type F toxin. J Clin Microbiol 2002; 40:2260–2262. doi: 10.1128/JCM.40.6.2260-2262.2002 12037104
32. Middlebrook JL, Franz DR. Botulinum Toxins. In: Sidell Fr, Takafuji ET and Franz DR, editors. Medical Aspects of Clinical and Biological Warfare. Washington, D.C.: United States Government Printing; 1997. pp. 643–654.
33. Kongsaengdao S, Samintarapanya K, Rusmeechan S, Wongsa A, Pothirat C, Permpikul C et al. An outbreak of botulism in Thailand: clinical manifestations and management of severe respiratory failure. Clin Infect Dis 2006; 43:1247–1256. doi: 10.1086/508176 17051488
34. McCarty CL, Angelo K, Beer KD, Cibulskas-White K, Quinn K, de Fijter S et al. Large Outbreak of Botulism Associated with a Church Potluck Meal—Ohio 2015. MMWR. Morb Mortal Wkly Rep 2015; 64:802–803.
35. Tacket CO, Shandera WX, Mann JM, Hargrett NT, Blake PA. Equine antitoxin use and other factors that predict outcome in type A foodborne botulism. Am J Med 1984; 76:794–798. doi: 10.1016/0002-9343(84)90988-4 6720725
36. Richardson JS, Parrera GS, Astacio H, Sahota H, Anderson DM, Hall C et al. Safety and clinical outcomes of an equine-derived heptavalent botulinum antitoxin treatment for confirmed or suspected botulism in the United States. Clin Infect Dis 2019; pii:ciz515. doi: 10.1093/cid/ciz515 31209461
37. Ball AP, Hopkinson RB, Farrell ID, Hutchison JG, Paul R, Watson RD et al. Human botulism caused by Clostridium botulinum type E: the Birmingham outbreak. Q J Med 1979; 48:473–491. 575566
38. Colebatch JG, Wolff AH, Gilbert RJ, Mathias CJ, Smith SE, Hirsch N et al. Slow recovery from severe foodborne botulism. Lancet 1989; 2:1216–1217. doi: 10.1016/s0140-6736(89)91822-9
39. Kiris E, Burnett JC, Kane CD, Bavari S. Recent advances in botulinum neurotoxin inhibitor development. Curr Top Med Chem 2014; 14:2044–2061. doi: 10.2174/1568026614666141022093350 25335887
40. Yu PA, Lin NH, Mahon BE, Sobel J, Yu Y, Mody RK et al. Safety and improved clinical outcomes in patients treated with new equine-derived heptavalent botulinum antitoxin. Clin Infect Dis. 2018; 66(Suppl 1):S57–S64. doi: 10.1093/cid/cix816 29293928
41. Cheng W, Joshi SB, He F, Brems DN, He B, Kerwin BA et al. Comparison of high-throughput biophysical methods to identify stabilizing excipients for a model IgG2 monoclonal antibody: conformational stability and kinetic aggregation measurements. J Pharm Sci 2012; 101:1701–1720. doi: 10.1002/jps.23076 22323186
42. Derman Y, Selby K, Miethe S, Frenzel A, Liu Y, Rasetti-Escargueil C et al. Neutralization of botulinum neurotoxin type E by a humanized antibody. Toxins 2016; 8(9):257. doi: 10.3390/toxins8090257 27626446
43. Fan Y, Garcia-Rodriguez C, Lou J, Wen W, Conrad F, Zhai W et al. A three monoclonal antibody combination potently neutralizes multiple botulinum neurotoxin serotype F subtypes. PLoS One 2017; 12:e0174187. doi: 10.1371/journal.pone.0174187 28323873
44. Garcia-Rodriguez C, Razai A, Geren IN, Lou J, Conrad F, Wen WH et al. A three monoclonal antibody combination potently neutralizes multiple botulinum neurotoxin serotype E subtypes. Toxins 2018; 10(3):105. doi: 10.3390/toxins10030105 29494481
45. Adekar SP, Takahashi T, Jones RM, Al-Saleem FH, Ancharski DM, Root MJ et al. Neutralization of botulinum neurotoxin by a human monoclonal antibody specific for the catalytic light chain. PLoS One 2008; 3:e3023. doi: 10.1371/journal.pone.0003023 18714390
46. Li M, Lee D, Obi CR, Freeberg JK, Farr-Jones S, Tomic MT. An ambient temperature-stable antitoxin of nine co-formulated antibodies for botulism caused by serotypes A, B and E. PLoS One 2018; 13:e0197011. doi: 10.1371/journal.pone.0197011 29746518
47. Takahashi H, Kitagawa Y, Maeda-Satoh M, Hasegawa H, Sawa H, Sata T. Monoclonal antibody and siRNAs for topoisomerase I suppress telomerase activity. Hybridoma (2005) 2009; 28:63–65. doi: 10.1089/hyb.2008.0066 19132895
48. Atassi MZ, Oshima M. Structure activity and immune (T and B cell) recognition of botulinum neurotoxins. Crit Rev Immunol 1999; 19:219–260. 10422600
49. Cheng LW, Stanker LH, Henderson TD 2nd, Lou J, Marks JD. Antibody protection against botulinum neurotoxin intoxication in mice. Infect Immun 2009; 77:4305–4313. doi: 10.1128/IAI.00405-09 19651864
50. Ravichandran E, Gong Y, Al Saleem FH, Ancharski DM, Joshi SG, Simpson LL. An initial assessment of the systemic pharmacokinetics of botulinum toxin. J Pharmacol Exp Ther 2006; 318: 1343–1351 doi: 10.1124/jpet.106.104661 16782822
Článek vyšel v časopise
PLOS One
2019 Číslo 9
- Tisícileté topoly, mokří psi, stárnoucí kočky a ospalé octomilky – „jednohubky“ z výzkumu 2024/41
- Jaké jsou aktuální trendy v léčbě karcinomu slinivky?
- Může hubnutí souviset s vyšším rizikem nádorových onemocnění?
- Menstruační krev má značný diagnostický potenciál, mimo jiné u diabetu
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
Nejčtenější v tomto čísle
- Graviola (Annona muricata) attenuates behavioural alterations and testicular oxidative stress induced by streptozotocin in diabetic rats
- CH(II), a cerebroprotein hydrolysate, exhibits potential neuro-protective effect on Alzheimer’s disease
- Comparison between Aptima Assays (Hologic) and the Allplex STI Essential Assay (Seegene) for the diagnosis of Sexually transmitted infections
- Assessment of glucose-6-phosphate dehydrogenase activity using CareStart G6PD rapid diagnostic test and associated genetic variants in Plasmodium vivax malaria endemic setting in Mauritania
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy