Metabolomic profiling of oxalate-degrading probiotic Lactobacillus acidophilus and Lactobacillus gasseri
Autoři:
Casey A. Chamberlain aff001; Marguerite Hatch aff001; Timothy J. Garrett aff001
Působiště autorů:
Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, United States of America
aff001
Vyšlo v časopise:
PLoS ONE 14(9)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0222393
Souhrn
Oxalate, a ubiquitous compound in many plant-based foods, is absorbed through the intestine and precipitates with calcium in the kidneys to form stones. Over 80% of diagnosed kidney stones are found to be calcium oxalate. People who form these stones often experience a high rate of recurrence and treatment options remain limited despite decades of dedicated research. Recently, the intestinal microbiome has become a new focus for novel therapies. Studies have shown that select species of Lactobacillus, the most commonly included genus in modern probiotic supplements, can degrade oxalate in vitro and even decrease urinary oxalate in animal models of Primary Hyperoxaluria. Although the purported health benefits of Lactobacillus probiotics vary significantly between species, there is supporting evidence for their potential use as probiotics for oxalate diseases. Defining the unique metabolic properties of Lactobacillus is essential to define how these bacteria interact with the host intestine and influence overall health. We addressed this need by characterizing and comparing the metabolome and lipidome of the oxalate-degrading Lactobacillus acidophilus and Lactobacillus gasseri using ultra-high-performance liquid chromatography-high resolution mass spectrometry. We report many species-specific differences in the metabolic profiles of these Lactobacillus species and discuss potential probiotic relevance and function resulting from their differential expression. Also described is our validation of the oxalate-degrading ability of Lactobacillus acidophilus and Lactobacillus gasseri, even in the presence of other preferred carbon sources, measuring in vitro 14C-oxalate consumption via liquid scintillation counting.
Klíčová slova:
Gastrointestinal tract – Lactobacillus – Lipid metabolism – Lipids – Metabolomics – Probiotics – Oxalates – Extremophiles
Zdroje
1. Fijan S. Microorganisms with claimed probiotic properties: an overview of recent literature. Int J Environ Res Public Health. 2014;11(5):4745–67. Epub 2014/05/05. doi: 10.3390/ijerph110504745 24859749; PubMed Central PMCID: PMC4053917.
2. Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, Pot B, et al. Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol. 2014;11(8):506–14. Epub 2014/06/10. doi: 10.1038/nrgastro.2014.66 24912386.
3. Venugopalan V, Shriner KA, Wong-Beringer A. Regulatory oversight and safety of probiotic use. Emerg Infect Dis. 2010;16(11):1661–5. doi: 10.3201/eid1611.100574 21029521; PubMed Central PMCID: PMC3294522.
4. La Fata G, Weber P, Mohajeri MH. Probiotics and the Gut Immune System: Indirect Regulation. Probiotics Antimicrob Proteins. 2018;10(1):11–21. doi: 10.1007/s12602-017-9322-6 PubMed Central PMCID: PMC5801397. 28861741
5. Dimidi E, Christodoulides S, Scott SM, Whelan K. Mechanisms of Action of Probiotics and the Gastrointestinal Microbiota on Gut Motility and Constipation. Adv Nutr. 2017;8(3):484–94. Epub 2017/05/15. doi: 10.3945/an.116.014407 28507013; PubMed Central PMCID: PMC5421123.
6. Ettinger G, MacDonald K, Reid G, Burton JP. The influence of the human microbiome and probiotics on cardiovascular health. Gut Microbes. 2014;5(6):719–28. doi: 10.4161/19490976.2014.983775 25529048; PubMed Central PMCID: PMC4615746.
7. Di Felice G, Barletta B, Butteroni C, Corinti S, Tinghino R, Colombo P, et al. Use of probiotic bacteria for prevention and therapy of allergic diseases: studies in mouse model of allergic sensitization. J Clin Gastroenterol. 2008;42 Suppl 3 Pt 1:S130–2. doi: 10.1097/MCG.0b013e318169c463 18806704.
8. Pirbaglou M, Katz J, de Souza RJ, Stearns JC, Motamed M, Ritvo P. Probiotic supplementation can positively affect anxiety and depressive symptoms: a systematic review of randomized controlled trials. Nutr Res. 2016;36(9):889–98. Epub 2016/06/21. doi: 10.1016/j.nutres.2016.06.009 27632908.
9. Behnsen J, Deriu E, Sassone-Corsi M, Raffatellu M. Probiotics: properties, examples, and specific applications. Cold Spring Harb Perspect Med. 2013;3(3):a010074. Epub 2013/03/01. doi: 10.1101/cshperspect.a010074 23457295; PubMed Central PMCID: PMC3579206.
10. Heeney DD, Gareau MG, Marco ML. Intestinal Lactobacillus in health and disease, a driver or just along for the ride? Curr Opin Biotechnol. 2018;49:140–7. Epub 2017/09/01. doi: 10.1016/j.copbio.2017.08.004 28866243; PubMed Central PMCID: PMC5808898.
11. Rossi M, Martínez-Martínez D, Amaretti A, Ulrici A, Raimondi S, Moya A. Mining metagenomic whole genome sequences revealed subdominant but constant Lactobacillus population in the human gut microbiota. Environ Microbiol. 2016. Epub 2016/03/11. doi: 10.1111/1462-2920.13295 26970435.
12. Walter J. Ecological role of lactobacilli in the gastrointestinal tract: implications for fundamental and biomedical research. Appl Environ Microbiol. 2008;74(16):4985–96. Epub 2008/06/06. doi: 10.1128/AEM.00753-08 18539818; PubMed Central PMCID: PMC2519286.
13. Frank DN, Pace NR. Gastrointestinal microbiology enters the metagenomics era. Curr Opin Gastroenterol. 2008;24(1):4–10. doi: 10.1097/MOG.0b013e3282f2b0e8 18043225.
14. McFarland LV, Evans CT, Goldstein EJC. Strain-Specificity and Disease-Specificity of Probiotic Efficacy: A Systematic Review and Meta-Analysis. Front Med (Lausanne). 2018;5:124. Epub 2018/05/07. doi: 10.3389/fmed.2018.00124 29868585; PubMed Central PMCID: PMC5949321.
15. Turroni S, Vitali B, Bendazzoli C, Candela M, Gotti R, Federici F, et al. Oxalate consumption by lactobacilli: evaluation of oxalyl-CoA decarboxylase and formyl-CoA transferase activity in Lactobacillus acidophilus. J Appl Microbiol. 2007;103(5):1600–9. doi: 10.1111/j.1365-2672.2007.03388.x 17953571.
16. Hatch M. Gut microbiota and oxalate homeostasis. Ann Transl Med. 2017;5(2):36. doi: 10.21037/atm.2016.12.70 28217701; PubMed Central PMCID: PMC5300851.
17. Holmes RP, Goodman HO, Assimos DG. Contribution of dietary oxalate to urinary oxalate excretion. Kidney Int. 2001;59(1):270–6. doi: 10.1046/j.1523-1755.2001.00488.x 11135080.
18. Holmes RP, Assimos DG. Glyoxylate synthesis, and its modulation and influence on oxalate synthesis. J Urol. 1998;160(5):1617–24. 9783918.
19. Miller AW, Dearing D. The metabolic and ecological interactions of oxalate-degrading bacteria in the Mammalian gut. Pathogens. 2013;2(4):636–52. Epub 2013/12/06. doi: 10.3390/pathogens2040636 25437337; PubMed Central PMCID: PMC4235702.
20. Worcester EM, Coe FL. Nephrolithiasis. Prim Care. 2008;35(2):369–91, vii. doi: 10.1016/j.pop.2008.01.005 18486720; PubMed Central PMCID: PMC2518455.
21. Khan SR, Pearle MS, Robertson WG, Gambaro G, Canales BK, Doizi S, et al. Kidney stones. Nat Rev Dis Primers. 2017;3:17001. Epub 2017/01/12. doi: 10.1038/nrdp.2017.1 28079115.
22. Abratt VR, Reid SJ. Oxalate-degrading bacteria of the human gut as probiotics in the management of kidney stone disease. Adv Appl Microbiol. 2010;72:63–87. doi: 10.1016/S0065-2164(10)72003-7 20602988.
23. Liebman M, Al-Wahsh IA. Probiotics and other key determinants of dietary oxalate absorption. Adv Nutr. 2011;2(3):254–60. Epub 2011/04/30. doi: 10.3945/an.111.000414 22332057; PubMed Central PMCID: PMC3090165.
24. Hatch M, Freel RW. The roles and mechanisms of intestinal oxalate transport in oxalate homeostasis. Semin Nephrol. 2008;28(2):143–51. doi: 10.1016/j.semnephrol.2008.01.007 18359395; PubMed Central PMCID: PMC2430047.
25. Whittamore JM, Hatch M. The role of intestinal oxalate transport in hyperoxaluria and the formation of kidney stones in animals and man. Urolithiasis. 2017;45(1):89–108. Epub 2016/12/02. doi: 10.1007/s00240-016-0952-z 27913853; PubMed Central PMCID: PMC5358548.
26. Selle K, Klaenhammer TR. Genomic and phenotypic evidence for probiotic influences of Lactobacillus gasseri on human health. FEMS Microbiol Rev. 2013;37(6):915–35. Epub 2013/04/12. doi: 10.1111/1574-6976.12021 23488471.
27. Cho YA, Kim J. Effect of Probiotics on Blood Lipid Concentrations: A Meta-Analysis of Randomized Controlled Trials. Medicine (Baltimore). 2015;94(43):e1714. doi: 10.1097/MD.0000000000001714 26512560; PubMed Central PMCID: PMC4985374.
28. Shimizu M, Hashiguchi M, Shiga T, Tamura HO, Mochizuki M. Meta-Analysis: Effects of Probiotic Supplementation on Lipid Profiles in Normal to Mildly Hypercholesterolemic Individuals. PLoS One. 2015;10(10):e0139795. Epub 2015/10/16. doi: 10.1371/journal.pone.0139795 26473340; PubMed Central PMCID: PMC4608827.
29. Sazawal S, Hiremath G, Dhingra U, Malik P, Deb S, Black RE. Efficacy of probiotics in prevention of acute diarrhoea: a meta-analysis of masked, randomised, placebo-controlled trials. Lancet Infect Dis. 2006;6(6):374–82. doi: 10.1016/S1473-3099(06)70495-9 16728323.
30. Gao XW, Mubasher M, Fang CY, Reifer C, Miller LE. Dose-response efficacy of a proprietary probiotic formula of Lactobacillus acidophilus CL1285 and Lactobacillus casei LBC80R for antibiotic-associated diarrhea and Clostridium difficile-associated diarrhea prophylaxis in adult patients. Am J Gastroenterol. 2010;105(7):1636–41. Epub 2010/02/09. doi: 10.1038/ajg.2010.11 20145608.
31. Ringel-Kulka T, Palsson OS, Maier D, Carroll I, Galanko JA, Leyer G, et al. Probiotic bacteria Lactobacillus acidophilus NCFM and Bifidobacterium lactis Bi-07 versus placebo for the symptoms of bloating in patients with functional bowel disorders: a double-blind study. J Clin Gastroenterol. 2011;45(6):518–25. doi: 10.1097/MCG.0b013e31820ca4d6 21436726; PubMed Central PMCID: PMC4372813.
32. Sinn DH, Song JH, Kim HJ, Lee JH, Son HJ, Chang DK, et al. Therapeutic effect of Lactobacillus acidophilus-SDC 2012, 2013 in patients with irritable bowel syndrome. Dig Dis Sci. 2008;53(10):2714–8. Epub 2008/02/15. doi: 10.1007/s10620-007-0196-4 18274900.
33. Ya W, Reifer C, Miller LE. Efficacy of vaginal probiotic capsules for recurrent bacterial vaginosis: a double-blind, randomized, placebo-controlled study. Am J Obstet Gynecol. 2010;203(2):120.e1–6. doi: 10.1016/j.ajog.2010.05.023 20659602.
34. Ouwehand AC, Nermes M, Collado MC, Rautonen N, Salminen S, Isolauri E. Specific probiotics alleviate allergic rhinitis during the birch pollen season. World J Gastroenterol. 2009;15(26):3261–8. doi: 10.3748/wjg.15.3261 19598302; PubMed Central PMCID: PMC2710782.
35. van Baarlen P, Troost F, van der Meer C, Hooiveld G, Boekschoten M, Brummer RJ, et al. Human mucosal in vivo transcriptome responses to three lactobacilli indicate how probiotics may modulate human cellular pathways. Proc Natl Acad Sci U S A. 2011;108 Suppl 1:4562–9. Epub 2010/09/07. doi: 10.1073/pnas.1000079107 20823239; PubMed Central PMCID: PMC3063594.
36. Ferrarese R, Ceresola ER, Preti A, Canducci F. Probiotics, prebiotics and synbiotics for weight loss and metabolic syndrome in the microbiome era. Eur Rev Med Pharmacol Sci. 2018;22(21):7588–605. doi: 10.26355/eurrev_201811_16301 30468509.
37. Kim J, Yun JM, Kim MK, Kwon O, Cho B. Lactobacillus gasseri BNR17 Supplementation Reduces the Visceral Fat Accumulation and Waist Circumference in Obese Adults: A Randomized, Double-Blind, Placebo-Controlled Trial. J Med Food. 2018;21(5):454–61. Epub 2018/04/24. doi: 10.1089/jmf.2017.3937 29688793.
38. Chamberlain CA, Hatch M, Garrett TJ. Metabolomic and lipidomic characterization of Oxalobacter formigenes strains HC1 and OxWR by UHPLC-HRMS. Anal Bioanal Chem. 2019. Epub 2019/02/11. doi: 10.1007/s00216-019-01639-y 30740635.
39. Chamberlain CA, Rubio VY, Garrett TJ. Strain-Level Differentiation of Bacteria by Paper Spray Ionization Mass Spectrometry. Analytical chemistry. 2019;91(8):4964–8. Epub 2019/03/20. doi: 10.1021/acs.analchem.9b00330 30888152.
40. Hatch M, Cornelius J, Allison M, Sidhu H, Peck A, Freel RW. Oxalobacter sp. reduces urinary oxalate excretion by promoting enteric oxalate secretion. Kidney Int. 2006;69(4):691–8. doi: 10.1038/sj.ki.5000162 16518326.
41. FOLCH J, LEES M, SLOANE STANLEY GH. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957;226(1):497–509. 13428781.
42. Koelmel JP, Kroeger NM, Gill EL, Ulmer CZ, Bowden JA, Patterson RE, et al. Expanding Lipidome Coverage Using LC-MS/MS Data-Dependent Acquisition with Automated Exclusion List Generation. J Am Soc Mass Spectrom. 2017;28(5):908–17. Epub 2017/03/06. doi: 10.1007/s13361-017-1608-0 28265968; PubMed Central PMCID: PMC5408749.
43. He L, Diedrich J, Chu YY, Yates JR. Extracting Accurate Precursor Information for Tandem Mass Spectra by RawConverter. Anal Chem. 2015;87(22):11361–7. Epub 2015/11/04. doi: 10.1021/acs.analchem.5b02721 26499134; PubMed Central PMCID: PMC4777630.
44. Pluskal T, Castillo S, Villar-Briones A, Oresic M. MZmine 2: modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinformatics. 2010;11:395. Epub 2010/07/23. doi: 10.1186/1471-2105-11-395 20650010; PubMed Central PMCID: PMC2918584.
45. Wehrens R, Hageman JA, van Eeuwijk F, Kooke R, Flood PJ, Wijnker E, et al. Improved batch correction in untargeted MS-based metabolomics. Metabolomics. 2016;12:88. Epub 2016/03/18. doi: 10.1007/s11306-016-1015-8 27073351; PubMed Central PMCID: PMC4796354.
46. Koelmel JP, Kroeger NM, Ulmer CZ, Bowden JA, Patterson RE, Cochran JA, et al. LipidMatch: an automated workflow for rule-based lipid identification using untargeted high-resolution tandem mass spectrometry data. BMC Bioinformatics. 2017;18(1):331. Epub 2017/07/10. doi: 10.1186/s12859-017-1744-3 28693421; PubMed Central PMCID: PMC5504796.
47. Wulff JE, Mitchell MW. A Comparison of Various Normalization Methods for LC/MS Metabolomics Data. Scientific Research. 2018:339–51. doi: 10.4236/abb.2018.98022
48. van den Berg RA, Hoefsloot HC, Westerhuis JA, Smilde AK, van der Werf MJ. Centering, scaling, and transformations: improving the biological information content of metabolomics data. BMC Genomics. 2006;7:142. Epub 2006/06/08. doi: 10.1186/1471-2164-7-142 16762068; PubMed Central PMCID: PMC1534033.
49. Chong J, Soufan O, Li C, Caraus I, Li S, Bourque G, et al. MetaboAnalyst 4.0: towards more transparent and integrative metabolomics analysis. Nucleic Acids Res. 2018;46(W1):W486–W94. doi: 10.1093/nar/gky310 29762782; PubMed Central PMCID: PMC6030889.
50. HOLM S. A SIMPLE SEQUENTIALLY REJECTIVE MULTIPLE TEST PROCEDURE. Scandinavian Journal of Statistics. 1979;6(2):65–70. WOS:A1979JY78700003.
51. Roa Engel CA, Straathof AJ, Zijlmans TW, van Gulik WM, van der Wielen LA. Fumaric acid production by fermentation. Appl Microbiol Biotechnol. 2008;78(3):379–89. Epub 2008/01/24. doi: 10.1007/s00253-007-1341-x 18214471; PubMed Central PMCID: PMC2243254.
52. Lu HJ, Breidt F, Pérez-Díaz IM, Osborne JA. Antimicrobial effects of weak acids on the survival of Escherichia coli O157:H7 under anaerobic conditions. J Food Prot. 2011;74(6):893–8. doi: 10.4315/0362-028X.JFP-10-404 21669064.
53. PODOLAK R, ZAYAS J, KASTNER C, FUNG D. REDUCTION OF LISTERIA-MONOCYTOGENES, ESCHERICHIA-COLI O157-H7 AND SALMONELLA-TYPHIMURIUM DURING STORAGE ON BEEF SANITIZED WITH FUMARIC, ACETIC, AND LACTIC ACIDS. Journal of Food Safety. 1995;15(3):283–90. doi: 10.1111/j.1745-4565.1995.tb00140.x WOS:A1995TE39400007.
54. Podolak R, Zayas J, Kastner C, Fung D. Reduction of bacterial populations on vacuum-packaged ground beef patties with fumaric and lactic acids. Journal of Food Protection. 1996;59(10):1037–40. doi: 10.4315/0362-028X-59.10.1037 WOS:A1996VQ54200003. 31195464
55. OREN A. ANAEROBIC GROWTH OF HALOPHILIC ARCHAEOBACTERIA BY REDUCTION OF FUMARATE. Journal of General Microbiology. 1991;137:1387–90. doi: 10.1099/00221287-137-6-1387 WOS:A1991FR41100019.
56. Brooijmans R, de Vos WM, Hugenholtz J. Electron transport chains of lactic acid bacteria—walking on crutches is part of their lifestyle. F1000 Biol Rep. 2009;1:34. Epub 2009/04/29. doi: 10.3410/B1-34 20948651; PubMed Central PMCID: PMC2924693.
57. Max B, Salgado JM, Rodríguez N, Cortés S, Converti A, Domínguez JM. Biotechnological production of citric acid. Braz J Microbiol. 2010;41(4):862–75. Epub 2010/12/01. doi: 10.1590/S1517-83822010000400005 24031566; PubMed Central PMCID: PMC3769771.
58. Díaz-Muñiz I, Steele JL. Conditions required for citrate utilization during growth of Lactobacillus casei ATCC334 in chemically defined medium and cheddar cheese extract. Antonie Van Leeuwenhoek. 2006;90(3):233–43. Epub 2006/07/14. doi: 10.1007/s10482-006-9078-6 16841145.
59. Díaz-Muñiz I, Banavara DS, Budinich MF, Rankin SA, Dudley EG, Steele JL. Lactobacillus casei metabolic potential to utilize citrate as an energy source in ripening cheese: a bioinformatics approach. J Appl Microbiol. 2006;101(4):872–82. doi: 10.1111/j.1365-2672.2006.02965.x 16968299.
60. Branen AL, Keenan TW. Growth stimulation of Lactobacillus casei by sodium citrate. J Dairy Sci. 1970;53(5):593–7. doi: 10.3168/jds.S0022-0302(70)86259-2 5441913.
61. Branen AL, Keenan TW. Effects of citrate on the composition and metabolism of Lactobacillus casei. Appl Microbiol. 1971;21(6):993–8. 4327613; PubMed Central PMCID: PMC377330.
62. Benito de Cárdenas IL, Medina R, Oliver G. [Effect of glucose and lactose on the utilization of citrate by Lactobacillus casei subsp. rhamnosus ATCC 7469]. Rev Argent Microbiol. 1992;24(3–4):136–44. 1302866.
63. Chen J, Guo X, Zhu M, Chen C, Li D. Polysaccharide monooxygenase-catalyzed oxidation of cellulose to glucuronic acid-containing cello-oligosaccharides. Biotechnol Biofuels. 2019;12:42. Epub 2019/02/27. doi: 10.1186/s13068-019-1384-0 30858879; PubMed Central PMCID: PMC6391835.
64. Kaur R, Macleod J, Foley W, Nayudu M. Gluconic acid: an antifungal agent produced by Pseudomonas species in biological control of take-all. Phytochemistry. 2006;67(6):595–604. Epub 2006/01/30. doi: 10.1016/j.phytochem.2005.12.011 16445952.
65. Miners JO, Mackenzie PI. Drug glucuronidation in humans. Pharmacol Ther. 1991;51(3):347–69. doi: 10.1016/0163-7258(91)90065-t 1792239.
66. King CD, Rios GR, Green MD, Tephly TR. UDP-glucuronosyltransferases. Curr Drug Metab. 2000;1(2):143–61. 11465080.
67. Parsons JB, Rock CO. Bacterial lipids: metabolism and membrane homeostasis. Prog Lipid Res. 2013;52(3):249–76. Epub 2013/03/14. doi: 10.1016/j.plipres.2013.02.002 23500459; PubMed Central PMCID: PMC3665635.
68. Sengupta R, Altermann E, Anderson RC, McNabb WC, Moughan PJ, Roy NC. The role of cell surface architecture of lactobacilli in host-microbe interactions in the gastrointestinal tract. Mediators Inflamm. 2013;2013:237921. Epub 2013/03/13. doi: 10.1155/2013/237921 23576850; PubMed Central PMCID: PMC3610365.
69. Guerzoni ME, Lanciotti R, Cocconcelli PS. Alteration in cellular fatty acid composition as a response to salt, acid, oxidative and thermal stresses in Lactobacillus helveticus. Microbiology. 2001;147(Pt 8):2255–64. doi: 10.1099/00221287-147-8-2255 11496002.
70. Taranto MP, Fernandez Murga ML, Lorca G, de Valdez GF. Bile salts and cholesterol induce changes in the lipid cell membrane of Lactobacillus reuteri. J Appl Microbiol. 2003;95(1):86–91. 12807457.
71. Fozo EM, Kajfasz JK, Quivey RG. Low pH-induced membrane fatty acid alterations in oral bacteria. FEMS Microbiol Lett. 2004;238(2):291–5. doi: 10.1016/j.femsle.2004.07.047 15358413.
72. Artis D. Epithelial-cell recognition of commensal bacteria and maintenance of immune homeostasis in the gut. Nat Rev Immunol. 2008;8(6):411–20. doi: 10.1038/nri2316 18469830.
73. HAYAISHI O, JAKOBY WB, OHMURA E. Enzymatic decarboxylation of oxalic acid. J Biol Chem. 1956;222(1):435–46. 13367015.
Článek vyšel v časopise
PLOS One
2019 Číslo 9
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Je libo čepici místo mozkového implantátu?
- Pomůže v budoucnu s triáží na pohotovostech umělá inteligence?
- AI může chirurgům poskytnout cenná data i zpětnou vazbu v reálném čase
- Nová metoda odlišení nádorové tkáně může zpřesnit resekci glioblastomů
Nejčtenější v tomto čísle
- Graviola (Annona muricata) attenuates behavioural alterations and testicular oxidative stress induced by streptozotocin in diabetic rats
- CH(II), a cerebroprotein hydrolysate, exhibits potential neuro-protective effect on Alzheimer’s disease
- Comparison between Aptima Assays (Hologic) and the Allplex STI Essential Assay (Seegene) for the diagnosis of Sexually transmitted infections
- Assessment of glucose-6-phosphate dehydrogenase activity using CareStart G6PD rapid diagnostic test and associated genetic variants in Plasmodium vivax malaria endemic setting in Mauritania
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy