The accuracy of the frontal extent in stereoscopic environments: A comparison of direct selection and virtual cursor techniques
Autoři:
Chiuhsiang Joe Lin aff001; Dino Caesaron aff001; Bereket Haile Woldegiorgis aff001
Působiště autorů:
Department of Industrial Management, School of Management, National Taiwan University of Science and Technology, Taipei City, Taiwan (R.O.C.)
aff001; Department of Industrial Engineering, School of Industrial Engineering, Telkom University, Bandung, Indonesia
aff002
Vyšlo v časopise:
PLoS ONE 14(9)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0222751
Souhrn
This experiment investigated the accuracy of distance judgment and perception of the frontal extent in a stereoscopic environment. Eight virtual targets were projected in a circular arrangement with two center-to-center target distances (18 cm and 36 cm) and three target sizes (0.6 cm, 1.5 cm, and 3.7 cm). Fourteen participants judged the positions of virtual targets presented at a distance of 90 cm from them by employing two different interaction techniques: the direct selection technique and the virtual cursor technique. The results showed overall higher accuracy with the virtual cursor technique than with the direct selection technique. It was also found that the target size significantly affected the frontal extent accuracy. In addition, significant interactions between technique and center-to-center target distance were observed. The direct selection technique was more accurate at the 18 cm center-to-center target distance along the horizontal (x) and vertical (y) axes, while the virtual cursor technique was more accurate for the 36 cm center-to-center target distance along the y axis. During the direct selection, estimations tended to converge to the center of the virtual space; however, this convergence was not observed in the virtual cursor condition. The accuracy of pointing estimations suffered on the left side of participants. These findings could provide direction for virtual reality developers in selecting proper interaction techniques and appropriately positioning virtual targets in stereoscopic environments.
Klíčová slova:
Employment – Experimental design – Eyes – Surgical and invasive medical procedures – Virtual reality – Vision – Distance measurement
Zdroje
1. Chao CJ, Wu SY, Yau YJ, Feng WY, Tseng FY. Effects of three‐dimensional virtual reality and traditional training methods on mental workload and training performance. Human Factors and Ergonomics in Manufacturing & Service Industries. 2017;27(4):187–96. doi: 10.1002/hfm.20702
2. Webel S, Bockholt U, Engelke T, Gavish N, Olbrich M, Preusche C. An augmented reality training platform for assembly and maintenance skills. Robotics and Autonomous Systems. 2013;61(4):398–403. doi: https://doi.org/10.1016/j.robot.2012.09.013.
3. de Boer IR, Wesselink PR, Vervoorn JM. Student performance and appreciation using 3D vs. 2D vision in a virtual learning environment. European Journal of Dental Education. 2016;20(3):142–7. doi: 10.1111/eje.12152 26072997
4. Cutting JE. Reconceiving perceptual space. Looking into pictures: An interdisciplinary approach to pictorial space. Cambridge, MA, US: MIT Press; 2003. p. 215–38.
5. Kelly JW, Cherep LA, Klesel B, Siegel ZD, George S. Comparison of Two Methods for Improving Distance Perception in Virtual Reality. ACM Trans Appl Percept. 2018;15(2):1–11. doi: 10.1145/3165285
6. Lin CJ, Woldegiorgis BH, Caesaron D, Cheng L-Y. Distance estimation with mixed real and virtual targets in stereoscopic displays. Displays. 2015;36(Supplement C):41–8. doi: https://doi.org/10.1016/j.displa.2014.11.006.
7. Lin CJ, Woldegiorgis BH, Caesaron D. Distance estimation of near-field visual objects in stereoscopic displays. Journal of the Society for Information Display. 2014;22(7):370–9. doi: 10.1002/jsid.269
8. Lin CJ, Woldegiorgis BH. Interaction and visual performance in stereoscopic displays: A review. Journal of the Society for Information Display. 2015;23(7):319–32. doi: 10.1002/jsid.378
9. Naceri A, Chellali R. Depth perception within peripersonal space using head-mounted display. Presence: Teleoper Virtual Environ. 2011;20(3):254–72. doi: 10.1162/PRES_a_00048
10. Napieralski PE, Altenhoff BM, Bertrand JW, Long LO, Babu SV, Pagano CC, et al. Near-field distance perception in real and virtual environments using both verbal and action responses. ACM Trans Appl Percept. 2011;8(3):1–19. doi: 10.1145/2010325.2010328
11. Jones JA, Suma EA, Krum DM, Bolas M. Comparability of narrow and wide field-of-view head-mounted displays for medium-field distance judgments. Proceedings of the ACM Symposium on Applied Perception; Los Angeles, California. 2338701: ACM; 2012. p. 119-.
12. Renner RS, Velichkovsky BM, Helmert JR. The perception of egocentric distances in virtual environments—A review. ACM Comput Surv. 2013;46(2):1–40. doi: 10.1145/2543581.2543590
13. Cutting JE, Vishton PM. Chapter 3—Perceiving Layout and Knowing Distances: The Integration, Relative Potency, and Contextual Use of Different Information about Depth*. In: Epstein W, Rogers S, editors. Perception of Space and Motion. San Diego: Academic Press; 1995. p. 69–117.
14. Lappin JS, Shelton AL, Rieser JJ. Environmental context influences visually perceived distance. Perception & Psychophysics. 2006;68(4):571–81. doi: 10.3758/bf03208759
15. Witt JK, Stefanucci JK, Riener CR, Proffitt DR. Seeing beyond the target: environmental context affects distance perception. Perception. 2007;36(12):1752–68. Epub 2008/02/21. doi: 10.1068/p5617 18283926.
16. Sugovic M, Turk P, Witt JK. Perceived distance and obesity: It's what you weigh, not what you think. Acta psychologica. 2016;165:1–8. Epub 2016/02/09. doi: 10.1016/j.actpsy.2016.01.012 26854404.
17. Yamamoto N. Distance Perception. In: Kreutzer JS, DeLuca J, Caplan B, editors. Encyclopedia of Clinical Neuropsychology. Cham: Springer International Publishing; 2018. p. 1198–202.
18. Wartenberg C, Wiborg P. Precision of Exocentric Distance Judgments in Desktop and Cube Presentation. Presence. 2003;12(2):196–206. doi: 10.1162/105474603321640941
19. Geuss MN, Stefanucci JK, Creem-Regehr SH, Thompson WB. Effect of viewing plane on perceived distances in real and virtual environments. Journal of experimental psychology Human perception and performance. 2012;38(5):1242–53. Epub 2012/03/14. doi: 10.1037/a0027524 22409144.
20. Kelly JW, Hammel W, Sjolund LA, Siegel ZD. Frontal extents in virtual environments are not immune to underperception. Attention, Perception, & Psychophysics. 2015;77(6):1848–53. doi: 10.3758/s13414-015-0948-8 26105656
21. Waller D. Factors Affecting the Perception of Interobject Distances in Virtual Environments. Presence. 1999;8(6):657–70. doi: 10.1162/105474699566549
22. Dey A, Jarvis G, Sandor C, Reitmayr G, editors. Tablet versus phone: Depth perception in handheld augmented reality. 2012 IEEE International Symposium on Mixed and Augmented Reality (ISMAR); 2012 5–8 Nov. 2012.
23. Kunz BR, Wouters L, Smith D, Thompson WB, Creem-Regehr SH. Revisiting the effect of quality of graphics on distance judgments in virtual environments: A comparison of verbal reports and blind walking. Attention, Perception, & Psychophysics. 2009;71(6):1284–93. doi: 10.3758/app.71.6.1284 19633344
24. Loomis JM, Philbeck JW. Measuring spatial perception with spatial updating and action. In: Klatzky RL, MacWhinney B, Behrmann M, editors. Embodiment, Ego-Space, and Action. New York: Taylor & Francis, Psychology Press; 2008. p. 1–43.
25. Swan JE, Livingston MA, Smallman HS, Brown D, Baillot Y, Gabbard JL, et al., editors. A Perceptual Matching Technique for Depth Judgments in Optical, See-Through Augmented Reality. IEEE Virtual Reality Conference (VR 2006); 2006 25–29 March 2006.
26. Henry D, Furness T, editors. Spatial perception in virtual environments: Evaluating an architectural application. Proceedings of IEEE Virtual Reality Annual International Symposium; 1993 18–22 Sept. 1993.
27. Altenhoff BM, Napieralski PE, Long LO, Bertrand JW, Pagano CC, Babu SV, et al. Effects of calibration to visual and haptic feedback on near-field depth perception in an immersive virtual environment. Proceedings of the ACM Symposium on Applied Perception; Los Angeles, California. 2338691: ACM; 2012. p. 71–8.
28. Swan JE, Singh G, Ellis SR. Matching and Reaching Depth Judgments with Real and Augmented Reality Targets. IEEE Transactions on Visualization and Computer Graphics. 2015;21(11):1289–98. doi: 10.1109/TVCG.2015.2459895 26340777
29. Naceri D, Chellali R, Dionnet F, Toma S. Depth Perception Within Virtual Environments: Comparison Between two Display Technologies. International Journal on Advances in Intelligent Systems. 2010;3:51–64.
30. Kim K, Rosenthal MZ, Zielinski D, Brady R, editors. Comparison of desktop, head mounted display, and six wall fully immersive systems using a stressful task. 2012 IEEE Virtual Reality Workshops (VRW); 2012 4–8 March 2012.
31. Alexandrova IV, Teneva PT, Rosa Sdl, Kloos U, B HH, #252, et al. Egocentric distance judgments in a large screen display immersive virtual environment. Proceedings of the 7th Symposium on Applied Perception in Graphics and Visualization; Los Angeles, California. 1836258: ACM; 2010. p. 57–60.
32. Kelly JW, Cherep LA, Siegel ZD. Perceived Space in the HTC Vive. ACM Trans Appl Percept. 2017;15(1):1–16. doi: 10.1145/3106155
33. Bruder GS, Fernando Argelaguet; Olivier Anne-Helene; Lecuyer Anatole. CAVE Size Matters: Effects of Screen Distance and Parallax on Distance Estimation in Large Immersive Display Setups. Presence: Teleoperators & Virtual Environments. 2015;25(I):1–16. doi: 10.1109/TCYB.2018.2826016
34. Grechkin TY, Nguyen TD, Plumert JM, Cremer JF, Kearney JK. How does presentation method and measurement protocol affect distance estimation in real and virtual environments? ACM Transactions on Applied Perception. 2010;7(4):1–18. doi: 10.1145/1823738.1823744
35. Nguyen A, Banic A, editors. 3DTouch: A wearable 3D input device for 3D applications. 2015 IEEE Virtual Reality (VR); 2015 23–27 March 2015.
36. Jang Y, Noh S, Chang HJ, Kim T, Woo W. 3D Finger CAPE: Clicking Action and Position Estimation under Self-Occlusions in Egocentric Viewpoint. IEEE Transactions on Visualization and Computer Graphics. 2015;21(4):501–10. doi: 10.1109/TVCG.2015.2391860
37. Lubos P, Bruder G, Steinicke F, editors. Analysis of direct selection in head-mounted display environments. 2014 IEEE Symposium on 3D User Interfaces (3DUI); 2014 29–30 March 2014.
38. Chen J, Or C. Assessing the use of immersive virtual reality, mouse and touchscreen in pointing and dragging-and-dropping tasks among young, middle-aged and older adults. Applied Ergonomics. 2017;65:437–48. doi: 10.1016/j.apergo.2017.03.013 28395855
39. Lin CJ, Woldegiorgis BH. Egocentric distance perception and performance of direct pointing in stereoscopic displays. Applied Ergonomics. 2017;64(Supplement C):66–74. doi: https://doi.org/10.1016/j.apergo.2017.05.007.
40. Woldegiorgis BH, Lin CJ. The accuracy of distance perception in the frontal plane of projection‐based stereoscopic environments. Journal of the Society for Information Display. 2017;25(12):701–11. doi: 10.1002/jsid.618
41. Bruder G, Steinicke F, Sturzlinger W. To touch or not to touch?: comparing 2D touch and 3D mid-air interaction on stereoscopic tabletop surfaces. Proceedings of the 1st symposium on Spatial user interaction; Los Angeles, California, USA. 2491369: ACM; 2013. p. 9–16.
42. Jerald J. The VR Book: Human-Centered Design for Virtual Reality: Association for Computing Machinery and Morgan; Claypool; 2016. 635 p.
43. Mine MR. Virtual Environment Interaction Techniques. University of North Carolina at Chapel Hill, 1995.
44. Bruder G, Steinicke F, Sturzlinger W. Effects of visual conflicts on 3D selection task performance in stereoscopic display environments. 2013 IEEE Symposium on 3D User Interfaces (3DUI); 16–17 March 20132013. p. 115–8.
45. Poupyrev I, Ichikawa T. Manipulating Objects in Virtual Worlds: Categorization and Empirical Evaluation of Interaction Techniques. Journal of Visual Languages & Computing. 1999;10(1):19–35. doi: http://dx.doi.org/10.1006/jvlc.1998.0112.
46. Deng C-L, Geng P, Hu Y-F, Kuai S-G. Beyond Fitts’s Law: A Three-Phase Model Predicts Movement Time to Position an Object in an Immersive 3D Virtual Environment. Human Factors. 2019;61(6):879–94. doi: 10.1177/0018720819831517 30912987.
47. Lin CJ, Abreham BT, Woldegiorgis BH. Effects of displays on a direct reaching task: A comparative study of head mounted display and stereoscopic widescreen display. International Journal of Industrial Ergonomics. 2019;72:372–9. doi: https://doi.org/10.1016/j.ergon.2019.06.013.
48. Poupyrev I, Weghorst S, Fels S. Non-isomorphic 3D rotational techniques. Proceedings of the SIGCHI conference on Human Factors in Computing Systems; The Hague, The Netherlands. 332497: ACM; 2000. p. 540–7.
49. Werkhoven PJ, Groen J. Manipulation Performance in Interactive Virtual Environments. Human Factors. 1998;40(3):432–42. doi: 10.1518/001872098779591322
50. Argelaguet F, Andujar C. A survey of 3D object selection techniques for virtual environments. Computers & Graphics. 2013;37(3):121–36. doi: https://doi.org/10.1016/j.cag.2012.12.003.
51. Chan L-W, Kao H-S, Chen MY, Lee M-S, Hsu J, Hung Y-P. Touching the void: direct-touch interaction for intangible displays. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems; Atlanta, Georgia, USA. 1753725: ACM; 2010. p. 2625–34.
52. Bruder G, Steinicke F, Stuerzlinger W, editors. Touching the Void Revisited: Analyses of Touch Behavior on and above Tabletop Surfaces2013; Berlin, Heidelberg: Springer Berlin Heidelberg.
53. Mine MR, Frederick P. Brooks J, Sequin CH. Moving objects in space: exploiting proprioception in virtual-environment interaction. Proceedings of the 24th annual conference on Computer graphics and interactive techniques. 258747: ACM Press/Addison-Wesley Publishing Co.; 1997. p. 19–26.
54. Lemmerman DK., LaViola J J. Jr. Effects of Interaction-Display Offset on User Performance in Surround Screen Virtual Environments 2007. 303–4 p.
55. Wang Y, MacKenzie C. Effects of orientation disparity between haptic and graphic displays of objects in virtual environments. 1999.
56. Dey A, Cunningham A, Sandor C, editors. Evaluating depth perception of photorealistic mixed reality visualizations for occluded objects in outdoor environments. 2010 IEEE Symposium on 3D User Interfaces (3DUI); 2010 20–21 March 2010.
57. ISO I. DIS 9241–9: Ergonomic Requirements for Office Work with Visual Display Terminals, Non-Keyboard Input Device Requirements.2000; 1:[57 p.].
58. Bérard F, Ip J, Benovoy M, El-Shimy D, Blum JR, Cooperstock JR, editors. Did “Minority Report” Get It Wrong? Superiority of the Mouse over 3D Input Devices in a 3D Placement Task2009; Berlin, Heidelberg: Springer Berlin Heidelberg.
59. Burno RA, Wu B, Doherty R, Colett H, Elnaggar R. Applying Fitts’ Law to Gesture Based Computer Interactions. Procedia Manufacturing. 2015;3:4342–9. doi: https://doi.org/10.1016/j.promfg.2015.07.429.
60. Lin J, Harris-Adamson C, Rempel D. The Design of Hand Gestures for Selecting Virtual Objects. International Journal of Human–Computer Interaction. 2019:1–7. doi: 10.1080/10447318.2019.1571783
61. Shen Y, Ong SK, Nee AYC. Vision-Based Hand Interaction in Augmented Reality Environment. International Journal of Human–Computer Interaction. 2011;27(6):523–44. doi: 10.1080/10447318.2011.555297
62. Geuss M, Stefanucci J, Creem-Regehr S, Thompson WB. Can I pass?: using affordances to measure perceived size in virtual environments. Proceedings of the 7th Symposium on Applied Perception in Graphics and Visualization; Los Angeles, California. 1836259: ACM; 2010. p. 61–4.
63. Interrante V, Ries B, Anderson L, editors. Distance Perception in Immersive Virtual Environments, Revisited. IEEE Virtual Reality Conference (VR 2006); 2006 25–29 March 2006.
64. Interrante V, Ries B, Lindquist J, Kaeding M, Anderson L. Elucidating Factors that Can Facilitate Veridical Spatial Perception in Immersive Virtual Environments. Presence: Teleoperators and Virtual Environments. 2008;17(2):176–98. doi: 10.1162/pres.17.2.176
65. Sun H-M, Li S-P, Zhu Y-Q, Hsiao B. The ef\fect of user's perceived presence and promotion focus on usability for interacting in virtual environments. Applied Ergonomics. 2015;50:126–32. doi: 10.1016/j.apergo.2015.03.006 25959326
66. Richardson AR, Waller D. The effect of feedback training on distance estimation in virtual environments. Applied Cognitive Psychology. 2005;19(8):1089–108. doi: 10.1002/acp.1140
Článek vyšel v časopise
PLOS One
2019 Číslo 9
- Tisícileté topoly, mokří psi, stárnoucí kočky a ospalé octomilky – „jednohubky“ z výzkumu 2024/41
- Jaké jsou aktuální trendy v léčbě karcinomu slinivky?
- Může hubnutí souviset s vyšším rizikem nádorových onemocnění?
- Menstruační krev má značný diagnostický potenciál, mimo jiné u diabetu
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
Nejčtenější v tomto čísle
- Graviola (Annona muricata) attenuates behavioural alterations and testicular oxidative stress induced by streptozotocin in diabetic rats
- CH(II), a cerebroprotein hydrolysate, exhibits potential neuro-protective effect on Alzheimer’s disease
- Comparison between Aptima Assays (Hologic) and the Allplex STI Essential Assay (Seegene) for the diagnosis of Sexually transmitted infections
- Assessment of glucose-6-phosphate dehydrogenase activity using CareStart G6PD rapid diagnostic test and associated genetic variants in Plasmodium vivax malaria endemic setting in Mauritania
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy