A novel strategy for interpreting the T-SPOT.TB test results read by an ELISPOT plate imager
Autoři:
Tae Yeul Kim aff001; Ho Eun Chang aff001; Seong-Wook Lee aff002; Soo Hyun Seo aff001; Yun Ji Hong aff001; Jeong Su Park aff001; Kyoung Un Park aff001
Působiště autorů:
Department of Laboratory Medicine, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do, Korea
aff001; Department of Molecular Biology, Dankook University, Yongin-si, Gyeonggi-do, Korea
aff002; Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Korea
aff003
Vyšlo v časopise:
PLoS ONE 14(9)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0222920
Souhrn
Background
The T-SPOT.TB can be read by an ELISPOT plate imager as an alternative to a labor-intensive and time-consuming manual reading, but its accuracy has not been sufficiently discussed to date.
Methods
1,423 test results obtained from manual reading using a microscope and an ELISPOT plate imager were compared. The agreement of qualitative test results was assessed using Cohen's kappa coefficient. The relationship of spot counts was studied using Bland-Altman analysis.
Results
The overall percent agreement of the qualitative test results was 95.43% with a kappa coefficient of 0.91. Positive test results with the maximum net spot count of 8 and borderline test results showed relatively high discordance. The agreement of spot counts in panel A, panel B, and nil control was good, and variability did not increase with higher spot counts. On the basis of study findings, a novel strategy for interpreting the test results by an ELISPOT plate imager was proposed.
Conclusions
To increase diagnostic accuracy, positive test results with the maximum net spot count of 8 and borderline test results should be manually confirmed. Our strategy could be a practical guide for laboratories to build their own strategies for interpreting the test results by an ELISPOT plate imager.
Klíčová slova:
Decision making – Enzyme-linked immunoassays – Granulocytes – Nontuberculous mycobacteria – Qualitative studies – T cells – Technicians – Tuberculosis
Zdroje
1. Global tuberculosis report 2018. Geneva: World Health Organization; 2018.
2. Houben RM, Dodd PJ. The Global Burden of Latent Tuberculosis Infection: A Re-estimation Using Mathematical Modelling. PLoS Med. 2016;13(10):e1002152. doi: 10.1371/journal.pmed.1002152 27780211
3. Horsburgh CR Jr., Priorities for the treatment of latent tuberculosis infection in the United States. N Engl J Med. 2004;350(20):2060–2067. doi: 10.1056/NEJMsa031667 15141044
4. Latent tuberculosis infection: updated and consolidated guidelines for programmatic management. Geneva: World Health Organization; 2018.
5. Doan TN, Eisen DP, Rose MT, Slack A, Stearnes G, McBryde ES. Interferon-gamma release assay for the diagnosis of latent tuberculosis infection: A latent-class analysis. PloS one. 2017;12(11):e0188631. doi: 10.1371/journal.pone.0188631 29182688
6. Janetzki S, Price L, Schroeder H, Britten CM, Welters MJ, Hoos A. Guidelines for the automated evaluation of Elispot assays. Nat Protoc. 2015;10(7):1098–1115. doi: 10.1038/nprot.2015.068 26110715
7. Agarwal S, Nguyen DT, Lew JD, Teeter LD, Yamal JM, Restrepo BI, et al. Comparing TSPOT assay results between an Elispot reader and manual counts. Tuberculosis (Edinb). 2016;101S:S92–98.
8. Franken WP, Thijsen S, Wolterbeek R, Bouwman JJ, el Bannoudi H, Kik SV, et al. Variation in T-SPOT.TB spot interpretation between independent observers from different laboratories. Clin Vaccine Immunol. 2009;16(10):1439–1442. doi: 10.1128/CVI.00456-08 19710293
9. Al-Orainey IO. Diagnosis of latent tuberculosis: Can we do better? Ann Thorac Med. 2009;4(1):5–9. doi: 10.4103/1817-1737.44778 19561914
10. Wang JY, Chou CH, Lee LN, Hsu HL, Jan IS, Hsueh PR, et al. Diagnosis of tuberculosis by an enzyme-linked immunospot assay for interferon-gamma. Emerg Infect Dis. 2007;13(4):553–558. doi: 10.3201/eid1304.051195 17553269
11. Ramos JM, Robledano C, Masia M, Belda S, Padilla S, Rodriguez JC, et al. Contribution of interferon gamma release assays testing to the diagnosis of latent tuberculosis infection in HIV-infected patients: a comparison of QuantiFERON-TB Gold In Tube, T-SPOT.TB and tuberculin skin test. BMC Infect Dis. 2012;12:169. doi: 10.1186/1471-2334-12-169 22849726
12. Hawkins N, Self S, Wakefield J. The automated counting of spots for the ELISpot assay. J Immunol Methods. 2006;316(1–2):52–58. doi: 10.1016/j.jim.2006.08.005 17010368
13. Ringshausen FC, Schablon A, Nienhaus A. Interferon-gamma release assays for the tuberculosis serial testing of health care workers: a systematic review. J Occup Med Toxicol. 2012;7(1):6. doi: 10.1186/1745-6673-7-6 22537915
14. van Zyl-Smit RN, Pai M, Peprah K, Meldau R, Kieck J, Juritz J, et al. Within-subject variability and boosting of T-cell interferon-gamma responses after tuberculin skin testing. Am J Respir Crit Care Med. 2009;180(1):49–58. doi: 10.1164/rccm.200811-1704OC 19342414
15. King TC, Upfal M, Gottlieb A, Adamo P, Bernacki E, Kadlecek CP, et al. T-SPOT.TB Interferon-gamma Release Assay Performance in Healthcare Worker Screening at Nineteen U.S. Hospitals. Am J Respir Crit Care Med. 2015;192(3):367–373. doi: 10.1164/rccm.201501-0199OC 26017193
16. Rego K, Pereira K, MacDougall J, Cruikshank W. Utility of the T-SPOT((R)).TB test's borderline category to increase test resolution for results around the cut-off point. Tuberculosis (Edinb). 2018;108:178–185.
17. Tang P, Johnston J. Treatment of Latent Tuberculosis Infection. Curr Treat Options Infect Dis. 2017;9(4):371–379. doi: 10.1007/s40506-017-0135-7 29238270
18. Janetzki S, Schaed S, Blachere NE, Ben-Porat L, Houghton AN, Panageas KS. Evaluation of Elispot assays: influence of method and operator on variability of results. J Immunol Methods. 2004;291(1–2):175–183. doi: 10.1016/j.jim.2004.06.008 15345315
19. Sundararaman S, Karulin AY, Ansari T, BenHamouda N, Gottwein J, Laxmanan S, et al. High Reproducibility of ELISPOT Counts from Nine Different Laboratories. Cells. 2015;4(1):21–39. doi: 10.3390/cells4010021 25585297
20. De Rose R, Taylor EL, Law MG, van der Meide PH, Kent SJ. Granulocyte contamination dramatically inhibits spot formation in AIDS virus-specific ELISpot assays: analysis and strategies to ameliorate. J Immunol Methods. 2005;297(1–2):177–186. doi: 10.1016/j.jim.2004.12.009 15777941
21. Ashoor I, Najafian N, Korin Y, Reed EF, Mohanakumar T, Ikle D, et al. Standardization and cross validation of alloreactive IFNgamma ELISPOT assays within the clinical trials in organ transplantation consortium. Am J Transplant. 2013;13(7):1871–1879. doi: 10.1111/ajt.12286 23710568
Článek vyšel v časopise
PLOS One
2019 Číslo 9
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Je libo čepici místo mozkového implantátu?
- Pomůže v budoucnu s triáží na pohotovostech umělá inteligence?
- AI může chirurgům poskytnout cenná data i zpětnou vazbu v reálném čase
- Nová metoda odlišení nádorové tkáně může zpřesnit resekci glioblastomů
Nejčtenější v tomto čísle
- Graviola (Annona muricata) attenuates behavioural alterations and testicular oxidative stress induced by streptozotocin in diabetic rats
- CH(II), a cerebroprotein hydrolysate, exhibits potential neuro-protective effect on Alzheimer’s disease
- Comparison between Aptima Assays (Hologic) and the Allplex STI Essential Assay (Seegene) for the diagnosis of Sexually transmitted infections
- Assessment of glucose-6-phosphate dehydrogenase activity using CareStart G6PD rapid diagnostic test and associated genetic variants in Plasmodium vivax malaria endemic setting in Mauritania
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy