Expansion of the agricultural frontier in the largest South American Dry Forest: Identifying priority conservation areas for snakes before everything is lost
Autoři:
María Soledad Andrade-Díaz aff001; Juan Andrés Sarquis aff002; Bette A. Loiselle aff003; Alejandro R. Giraudo aff002; Juan Manuel Díaz-Gómez aff001
Působiště autorů:
Instituto de Bio y Geociencias del Noroeste Argentino (Consejo Nacional de Investigaciones Científicas y Técnicas—Universidad Nacional de Salta), Rosario de Lerma, Salta, Argentina
aff001; Instituto Nacional de Limnología (Consejo Nacional de Investigaciones Científicas y Técnicas–Universidad Nacional del Litoral), Ciudad Universitaria, Santa Fe, Argentina
aff002; Department of Wildlife Ecology and Conservation, Center for Latin American Studies, University of Florida, Gainesville, FL, United States of America
aff003; Facultad de Humanidades y Ciencias (Universidad Nacional del Litoral), Ciudad Universitaria, Santa Fe, Argentina
aff004
Vyšlo v časopise:
PLoS ONE 14(9)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0221901
Souhrn
Conservation planning relies on integrating existing knowledge, social-environmental contexts, and potential threats to identify gaps and opportunities for action. Here we present a case study on how priority areas for conservation can be determined using existing information on biodiversity occurrence and threats. Specifically, our goals are: (1) to model the ecological niche of twelve endemic snake species in the Dry Chaco Forest, (2) to quantify the impact of the deforestation rates on their distributions, (3) to propose high priority areas for conservation in order to improve the actual protected area system, and (4) to evaluate the influence of the human footprint on the optimization of selected priority areas. Our results demonstrate that Argentinian Dry Chaco represent, on average, ~74% of the distribution of endemic snake species and deforestation has reduced suitable areas of all snake species in the region. Further, the current protected areas are likely insufficient to conserve these species as only very low percentages (3.27%) of snakes’ ranges occur within existing protected areas. Our models identified high priority areas in the north of the Chaco forest where continuous, well-conserved forest still exists. These high priority areas include transition zones within the foothill forest and areas that could connect patches of forest between the western and eastern Chaco forest. Our findings identify spatial priorities that minimize conflicts with human activities, a key issue for this biodiversity hotspot area. We argue that consultation with stakeholders and decision-makers are urgently needed in order to take concrete actions to protect the habitat, or we risk losing the best conservation opportunities to protect endemic snakes that inhabit the Argentinian Dry Chaco.
Klíčová slova:
Biology and life sciences – Organisms – Eukaryota – Animals – Vertebrates – Amniotes – Reptiles – Squamates – Snakes – Ecology – Ecosystems – Forests – Biodiversity – Forest ecology – Ecology and environmental sciences – Conservation science – Terrestrial environments – Deforestation – Habitats
Zdroje
1. Foley JA, DeFries R, Asner GP, Barford C, Bonan G, Carpenter SR, et al. Global Consequences of Land Use. Science (80-). 2005;309: 570–574. doi: 10.1126/science.1111772 16040698
2. Sala OE, Van Vuuren D, Pereira HM, Lodge D, Alder J, Cumming GS, et al. Biodiversity across Scenarios. Millennium Ecosystem Assessment Volume 2: Scenarios Assessment. 2005. doi: 10.1890/080023
3. Bennett AF, Saunders DA. Habitat fragmentation and landscape change. In: Sodhi NS, Ehrlich PR, editors. Conservation Biology for All. New York: Oxford University press; 2010. doi: 10.1093/acprof:oso/9780199554232.003.0006
4. Baudron F, Giller KE. Agriculture and nature: Trouble and strife? Biol Conserv. Elsevier Ltd; 2014;170: 232–245. doi: 10.1016/j.biocon.2013.12.009
5. Laurance WF, Sayer J, Cassman KG. Agricultural expansion and its impacts on tropical nature. Trends Ecol Evol. Elsevier Ltd; 2014;29: 107–116. doi: 10.1016/j.tree.2013.12.001 24388286
6. Kortsch S, Primicerio R, Fossheim M, Dolgov A V, Aschan M. Climate change alters the structure of arctic marine food webs due to poleward shifts of boreal generalists. R Soc Publ. 2015;B 282. doi: 10.5061/dryad.73r6j
7. Nadeau CP, Urban MC, Bridle JR. Climates Past, Present, and Yet-to-Come Shape Climate Change Vulnerabilities. Trends Ecol Evol. Elsevier Ltd; 2017;32: 786–800. doi: 10.1016/j.tree.2017.07.012 28844791
8. Castaño-Uribe C. Diagnóstico y situación actual de las áreas protegidas en América Latina y el Caribe. Informe Regional. Bariloche, Argentina; 2007. doi: 10.1515/pralin-2016-0004.PBML
9. Garcia D. Efectos biológicos de la fragmentación de hábitats: nuevas aproximaciones para resolver un viejo problema. Ecosistemas. 2011;20: 1–10. doi: 10.7818/18
10. Miles L, Newton AC, DeFries RS, Ravilious C, May I, Blyth S, et al. A global overview of the conservation status of tropical dry forests. J Biogeogr. 2006;33: 491–505. doi: 10.1111/j.1365-2699.2005.01424.x
11. Portillo-Quintero CA, Sánchez-Azofeifa GA. Extent and conservation of tropical dry forests in the Americas. Biol Conserv. Elsevier Ltd; 2010;143: 144–155. doi: 10.1016/j.biocon.2009.09.020
12. Aide TM, Clark ML, Grau HR, López-Carr D, Levy MA, Redo D, et al. Deforestation and Reforestation of Latin America and the Caribbean (2001–2010). Biotropica. 2013;45: 262–271. doi: 10.1111/j.1744-7429.2012.00908.x
13. Prieto-Torres DA, Nori J, Rojas-Soto OR. Identifying priority conservation areas for birds associated to endangered Neotropical dry forests. Biol Conserv. Elsevier; 2018;228: 205–214. doi: 10.1016/j.biocon.2018.10.025
14. Strassburg BBN, Brooks T, Feltran-Barbieri R, Iribarrem A, Crouzeilles R, Loyola R, et al. Moment of truth for the Cerrado hotspot. Nat Ecol Evol. 2017;1: 13–15. doi: 10.1038/s41559-017-0099 28812670
15. Ballesteros-Mejia L, Lima JS, Collevatti RG. Spatially-explicit analyses reveal the distribution of genetic diversity and plant conservation status in Cerrado biome. Biodivers Conserv. Springer Netherlands; 2018; 1–18. doi: 10.1007/s10531-018-1588-9
16. Nori J, Torres R, Lescano JN, Cordier JM, Periago ME, Baldo D. Protected areas and spatial conservation priorities for endemic vertebrates of the Gran Chaco, one of the most threatened ecoregions of the world. Divers Distrib. 2016;22: 1212–1219. doi: 10.1111/ddi.12497
17. Eva HD, Belward AS, De Miranda EE, Di Bella CM, Gond V, Huber O, et al. A land cover map of South America. Glob Chang Biol. 2004;10: 731–744. doi: 10.1111/j.1529-8817.2003.00774.x
18. Cabrera AL. Regiones Fitogeográficas Argentinas. In: Kugler W, editor. Enciclopedia Argentina de agricultura y jardinería Tomo II; Fascículo 1. Acme S.A.C.I. Editorial; 1994. pp. 1–85.
19. Dinerstein E, Olsen DM, Graham DJ, Webster AL, Primm SA, Book-binder MP, et al. A conservation assessment of the terrestrial ecoregions of Latin America and the Caribbean. Washington D. C., USA: World Bank, WWF; 1995.
20. Periago ME, Chillo V, Ojeda RA. Loss of mammalian species from the South American Gran Chaco: Empty savanna syndrome? Mamm Rev. 2015;45: 41–53. doi: 10.1111/mam.12031
21. Abril A, Barttfeld P, Bucher EH. The effect of fire and overgrazing disturbes on soil carbon balance in the Dry Chaco forest. For Ecol Manage. 2005;206: 399–405. doi: 10.1016/j.foreco.2004.11.014
22. Grau HR, Gasparri NI, Aide TM. Agriculture expansion and deforestation in seasonally dry forests of north-west Argentina. Environ Conserv. 2005;32: 140–148. doi: 10.1017/S0376892905002092
23. Powell PA, Nanni AS, Názaro MG, Loto D, Torres R, Gasparri NI. Characterization of forest carbon stocks at the landscape scale in the Argentine Dry Chaco. For Ecol Manage. Elsevier; 2018;424: 21–27. doi: 10.1016/j.foreco.2018.04.033
24. Hoekstra JM, Boucher TM, Ricketts TH, Roberts C. Confronting a biome crisis: Global disparities of habitat loss and protection. Ecol Lett. 2005;8: 23–29. doi: 10.1111/j.1461-0248.2004.00686.x
25. Frate L, Acosta ATR, Cabido M, Hoyos L, Carranza ML. Temporal changes in forest contexts at multiple extents: Three decades of fragmentation in the Gran Chaco (1979–2010), Central Argentina. PLoS One. 2015;10: 1–17. doi: 10.1371/journal.pone.0142855 26630387
26. Gasparri NI, Grau HR, Manghi E. Carbon pools and emissions from deforestation in extra-tropical forests of northern Argentina between 1900 and 2005. Ecosystems. 2008;11: 1247–1261. doi: 10.1007/s10021-008-9190-8
27. Houghton RA. Revised estimates of the annual net flux of carbon to the atmosphere from changes in land use and land management 1850–2000. Tellus, Ser B Chem Phys Meteorol. 2003;55: 378–390. doi: 10.1034/j.1600-0889.2003.01450.x
28. Skole D, Tucker C. Tropical Deforestation and Habitat Fragmentation in the Amazon: Satellite Data From 1978 to 1988.”. Science (80-). 1993;260: 1905–1910.
29. Gasparri NI, Grau HR. Deforestation and fragmentation of Chaco dry forest in NW Argentina (1972–2007). For Ecol Manage. 2009;258: 913–921. doi: 10.1016/j.foreco.2009.02.024
30. Brown AD, Pacheco S, Lomáscolo T, Malizia L. Ecorregión Yungas. Situación ambiental en los bosques andinos yungueños. In: Brown A, Martínez Ortíz U, Acerbi M, Corcuera J, editors. La situación ambiental argentina 2005. Buenos Aires, Argentina: Fundación Vida Silvestre Argentina; 2006. pp. 53–56.
31. Izquierdo AE, Grau HR. Agriculture adjustment, land-use transition and protected areas in Northwestern Argentina. J Environ Manage. Elsevier Ltd; 2009;90: 858–865. doi: 10.1016/j.jenvman.2008.02.013 18439743
32. Collevatti RG, Lima-Ribeiro MS, Diniz-Filho JAF, Oliveira G, Dobrovolski R, Terribile LC. Stability of Brazilian Seasonally Dry Forests under Climate Change: Inferences for Long-Term Conservation. Am J Plant Sci. 2013;04: 792–805. doi: 10.4236/ajps.2013.44098
33. Prieto-Torres DA, Navarro-Sigüenza AG, Santiago-Alarcon D, Rojas-Soto OR. Response of the endangered tropical dry forests to climate change and the role of Mexican Protected Areas for their conservation. Glob Chang Biol. 2016;22: 364–379. doi: 10.1111/gcb.13090 26367278
34. Hidasi-Neto J, Joner DC, Resende F, Monteiro L de M, Faleiro FV, Loyola RD, et al. Climate change will drive mammal species loss and biotic homogenization in the Cerrado Biodiversity Hotspot. Perspect Ecol Conserv. 2019;17: 57–63. doi: 10.1016/j.pecon.2019.02.001
35. Jiménez-Valverde A, Lobo JM. Threshold criteria for conversion of probability of species presence to either–or presence–absence. Acta oecologica. 2007;31: 361–369. doi: 10.1016/j.actao.2007.02.001
36. Torres R, Gasparri NI, Blendinger PG, Grau HR. Land-use and land-cover effects on regional biodiversity distribution in a subtropical dry forest: a hierarchical integrative multi-taxa study. Reg Environ Chang. 2014;14: 1549–1561. doi: 10.1007/s10113-014-0604-1
37. Medina RG, Ponssa ML, Aráoz E. Environmental, land cover and land use constraints on the distributional patterns of anurans: Leptodacylusspecies (Anura, Leptodactylidae) from Dry Chaco. PeerJ. 2016;4: e2605. doi: 10.7717/peerj.2605 27833796
38. Ciarleglio M, Wesley Barnes J, Sarkar S. ConsNet: New software for the selection of conservation area networks with spatial and multi-criteria analyses. Ecography (Cop). 2009;32: 205–209. doi: 10.1111/j.1600-0587.2008.05721.x
39. Sarkar S, Illoldi-Range P. Systematic conservation planning: An updated protocol. Nat a Conserv. 2010;8: 19–26. doi: 10.4322/natcon.00801003
40. Moilanen A, Pouzols FM, Meller L, Veach V, Arponen A, Leppänen J, et al. Spatial conservation planning methods and software ZONATION. User Manual. 2014.
41. Watson JE, Grantham HS, Wilson KA, Possingham HP. Systematic conservation planning: past, present and future. In: Ladle RJ, Whittaker R., editors. Conservation biogeography. Oxford: Wi. 2011. pp. 136–160.
42. Kukkala AS, Arponen A, Maiorano L, Moilanen A, Thuiller W, Toivonen T, et al. Matches and mismatches between national and EU-wide priorities: Examining the Natura 2000 network in vertebrate species conservation. Biol Conserv. Elsevier Ltd; 2016;198: 193–201. doi: 10.1016/j.biocon.2016.04.016
43. Brum FT, Graham CH, Costa GC, Hedges SB, Penone C, Radeloff VC, et al. Global priorities for conservation across multiple dimensions of mammalian diversity. Proc Natl Acad Sci. 2017;114: 7641–7646. doi: 10.1073/pnas.1706461114 28674013
44. Lessmann J, Muñoz J, Bonaccorso E. Maximizing species conservation in continental Ecuador: A case of systematic conservation planning for biodiverse regions. Ecol Evol. 2014;4: 2410–2422. doi: 10.1002/ece3.1102 25360277
45. Prieto-Torres DA, Rojas-Soto OR. Reconstructing the Mexican Tropical Dry Forests via an autoecological niche approach: Reconsidering the ecosystem boundaries. PLoS One. 2016;11: 1–22. doi: 10.1371/journal.pone.0150932 26968031
46. Reed Richard Shine RN. Lying in wait for extinction: Ecological correlates of conservation status among Australian elapid snakes. Conserv Biol. 2002;16: 451–461. doi: 10.1046/j.1523-1739.2002.02283.x
47. Nori J, Carrasco PA, Leynaud GC. Venomous snakes and climate change: Ophidism as a dynamic problem. Clim Change. 2014;122: 67–80. doi: 10.1007/s10584-013-1019-6
48. Gibbons JW, Scott DE, Ryan TJ, Buhlmann KA, Tuberville TD, Metts BS, et al. The Global Decline of Reptiles, Déjà Vu Amphibians. Bioscience. 2000;50: 653–666. doi: 10.1641/0006-3568(2000)050[0653:TGDORD]2.0.CO;2
49. Ribeiro MC, Metzger JP, Martensen AC, Ponzoni FJ, Hirota MM. The Brazilian Atlantic Forest: How much is left, and how is the remaining forest distributed? Implications for conservation. Biol Conserv. Elsevier Ltd; 2009;142: 1141–1153. doi: 10.1016/j.biocon.2009.02.021
50. Schneider-Maunoury L, Lefebvre V, Ewers RM, Medina-Rangel GF, Peres CA, Somarriba E, et al. Abundance signals of amphibians and reptiles indicate strong edge effects in Neotropical fragmented forest landscapes. Biol Conserv. Elsevier Ltd; 2016;200: 207–215. doi: 10.1016/j.biocon.2016.06.011
51. Sunny A, González-Fernández A, D’Addario M. Potential distribution of the endemic imbricate alligator lizard (Barisia imbricata imbricata) in highlands of central Mexico. Amphib Reptil. 2017;38: 225–231. doi: 10.1163/15685381-00003092
52. Cardozo G, Chiaraviglio M. Landscape changes influence the reproductive behaviour of a key “capital breeder” snake (Boa constrictor occidentalis) in the Gran Chaco region, Argentina. Biol Conserv. Elsevier Ltd; 2008;141: 3050–3058. doi: 10.1016/j.biocon.2008.08.026
53. Giraudo AR, Arzamendia V, Bellini GP, Bessa CA, Cinthia C, Cardozo G, et al. Categorización del estado de conservación de las Serpientes de la República Argentina. Cuad Herpetol. 2012;26: 303–326.
54. Akani GC, Eniang EA, Ekpo IJ, Angelici FM, Luiselli L. Food Habits of the Snake Psammophis phillipsi from the Continuous Rain-Forest Region of Southern Nigeria (West Africa). J Herpetol. 2003;37: 208–211. Available: http://www.jstor.org/stable/1565855
55. Shine R, Fitzgerald M. Conservation and reproduction of an endangered species: the broad- headed snake, Hoplocephalus bungaroides (Elapidae). Aust Zool. 1989;25: 65–67. doi: 10.1016/j.taap.2007.10.016
56. Dodd CKJ. Strategies for snake conservation. In: Seigel RA, Collins JT, editors. Snakes: Ecology and Behavior. McGraw-Hil. Nueva York; 1993. pp. 363–393.
57. Naggs F. Saving living diversity in the face of the unstoppable 6th mass extinction: A call for urgent international action. Popul Sustain. 2007;1: 67–81.
58. Arzamendia V, Giraudo AR. Using biodiversity patterns for assessment and design protected areas: snakes of Santa Fe province (Argentina) as example. Rev Chil Hist Nat. 2004;77: 335–348. doi: 10.4067/S0716-078X2004000200011
59. Arzamendia V, Giraudo AR. A panbiogeographical model to prioritize areas for conservation along large rivers. Divers Distrib. 2012;18: 168–179. doi: 10.1111/j.1472-4642.2011.00829.x
60. Mota-Vargas C, Rojas-Soto OR. The importance of defining the geographic distribution of species for conservation: The case of the Bearded Wood-Partridge. J Nat Conserv. Elsevier GmbH.; 2012;20: 10–17. doi: 10.1016/j.jnc.2011.07.002
61. Soberón J, Peterson AT. Interpretation of models of fundamental ecological niches and species’ distributional areas. Biodivers Informatics. 2005;2: 1–10. doi: 10.17161/bi.v2i0.4
62. Li B V., Pimm SL. China’s endemic vertebrates sheltering under the protective umbrella of the giant panda. Conserv Biol. 2016;30: 329–339. doi: 10.1111/cobi.12618 26332026
63. Peterson AT, Navarro-Sigüenza AG, Gordillo A. Assumption-versus data-based approaches to summarizing species’ ranges. Conserv Biol. 2018;32: 568–575. doi: 10.1111/cobi.12801 27488935
64. Elith J, Graham CH, Anderson RP, Dudík M, Ferrier S, Guisan A, et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography (Cop). 2006;29: 129–151. doi: 10.1111/j.1432-1033.1987.tb13499.x
65. Peterson T. Predicting species’ geographic distributions based on ecological niche modeling. Condor. 2001;103: 599–605. doi: 10.1650/0010-5422(2001)103[0599:PSGDBO]2.0.CO;2
66. Araújo MB, Garcia RA, Naimi B, Rahbek C, Barbosa AM, Anderson RP, et al. Standards for distribution models in biodiversity assessments. Sci Adv. 2019;5. doi: 10.1126/sciadv.aat4858 30746437
67. Kremen C, Cameron A, Moilanen A, Phillips SJ, Thomas CD, Beentje H, et al. Aligning conservation priorities across taxa in Madagascar with high-resolution planning tools. Science (80-). 2008;320: 222–226. doi: 10.1126/science.1155193 18403708
68. Pressey RL, Cabeza M, Watts ME, Cowling RM, Wilson KA. Conservation planning in a changing world. Trends Ecol Evol. Elsevier; 2007;22: 583–92. doi: 10.1016/j.tree.2007.10.001 17981360
69. Moilanen A, Franco AMA, Early RI, Fox R, Wintle B, Thomas CD. Prioritizing multiple-use landscapes for conservation: Methods for large multi-species planning problems. Proc R Soc B Biol Sci. 2005;272: 1885–1891. doi: 10.1098/rspb.2005.3164 16191593
70. Ferrier S, Wintle BA. Quantitative approaches to spatial conservation prioritization: matching the solution to the need. Moilanen A, Wilson KA, Possingham H, editors. Oxford University Press; Oxford.; 2009; 1–15.
71. Kukkala AS, Moilanen A. Core concepts of spatial prioritisation in systematic conservation planning. Biol Rev. 2013;88: 443–464. doi: 10.1111/brv.12008 23279291
72. Global Biodiversity Information Facility—GBIF.org. GBIF Occurrence Download: Boa constrictor (2nd February 2018) https://doi.org/10.15468/dl.yjywdt; Epicrates alvarezi (28th August 2017) https://doi.org/10.15468/dl.yjgu4r; Erythrolamprus guentheri (26th September 2017) https://doi.org/10.15468/dl.45loag; Erythrolamprus sagittifer (20th March 2018) https://doi.org/10.15468/dl.pysagt; Leptodeira annulata subsp. pulchriceps (28th August 2017) https://doi.org/10.15468/dl.gv1yot; Philodryas baroni (27th September 2017) https://doi.org/10.15468/dl.fqhypr; Philodryas mattogrossensis (15th September 2017) https://doi.org/10.15468/dl.vtvhym; Phimophis vittatus (22nd March 2018) https://doi.org/10.15468/dl.vl1s5p; Psomophis genimaculatus (27th September 2017) https://doi.org/10.15468/dl.hwhitd; Sibynomorphus lavillai (27th September 2017) https://doi.org/10.15468/dl.bgt1wt; Thamnodynastes chaquensis (27th September 2017) https://doi.org/10.15468/dl.n7pijg; Xenodon pulcher (27th September 2017) https://doi.org/10.15468/dl.qreavk
73. Arzamendia V, Giraudo AR. Influence of large South American rivers of the Plata Basin on distributional patterns of tropical snakes: A panbiogeographical analysis. J Biogeogr. 2009;36: 1739–1749. doi: 10.1111/j.1365-2699.2009.02116.x
74. Hortal IN, Lobo JM, Jimenez-Valverde A. Limitations of Biodiversity Databases: Case Study on Seed-Plant Diversity in Tenerife, Canary Islands. 2007;21: 853–863. doi: 10.1111/j.1523-1739.2007.00686.x 17531062
75. Merow C, Wilson AM, Jetz W. Integrating occurrence data and expert maps for improved species range predictions. Glob Ecol Biogeogr. 2016;26: 243–258. doi: 10.1111/geb.12539
76. Loiselle BA, Jørgensen PM, Consiglio T, Jiménez I, Blake JG, Lohmann LG, et al. Predicting species distributions from herbarium collections: Does climate bias in collection sampling influence model outcomes? J Biogeogr. 2008;35: 105–116. doi: 10.1111/j.1365-2699.2007.01779.x
77. Merow C, Smith MJ, Edwards TC, Guisan A, Mcmahon SM, Normand S, et al. What do we gain from simplicity versus complexity in species distribution models? Ecography (Cop). 2014;37: 1267–1281. doi: 10.1111/ecog.00845
78. Boria RA, Olson LE, Goodman SM, Anderson RP. Spatial filtering to reduce sampling bias can improve the performance of ecological niche models. Ecol Modell. Elsevier B.V.; 2014;275: 73–77. doi: 10.1016/j.ecolmodel.2013.12.012
79. Broennimann O, Cola V Di, Petitpierre B, Breiner F, Scherrer D, D`Amen M, et al. Ecospat: spatial ecology miscellaneous methods. Package “ecospat”. (R Packag Version 30). 2018;2. doi: 10.1111/ecog.02671
80. Di Cola V, Broennimann O, Petitpierre B, Breiner FT, D’Amen M, Randin C, et al. ecospat: an R package to support spatial analyses and modeling of species niches and distributions. Ecography (Cop). 2017;40: 774–787. doi: 10.1111/ecog.02671
81. Fick SE, Hijmans RJ. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int J Climatol. 2017;37: 4302–4315. doi: 10.1002/joc.5086
82. QGIS DevelopmentTeam. QGIS Geographic information system. Open source geospatial foundation project. 2016.
83. Barve N, Barve V, Jiménez-Valverde A, Lira-Noriega A, Maher SP, Peterson AT, et al. The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecol Modell. Elsevier B.V.; 2011;222: 1810–1819. doi: 10.1016/j.ecolmodel.2011.02.011
84. Olson DM, Dinerstein E, Wikramanayake ED, Burgess ND, Powell GVN, Underwood EC, et al. Terrestrial Ecoregions of the World: A New Map of Life on Earth. Bioscience. 2001;51: 933. doi: 10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2
85. Phillips SJ, Andersonb RP, Schapired RE. Maximum entropy modeling of species geographic distributions. Ecol Model 190. 2006; 231–259. doi: 10.1016/j.ecolmodel.2005.03.026
86. Phillips SJ, Dudík M, Elith J, Graham CH, Lehmann A, Leathwick JR, et al. Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data. 2009;19: 181–197. doi: 10.1890/07-2153.1 19323182
87. Heikkinen RK, Luoto M, Araujo MB, Virkkala R, Thuiller W, Sykes MT. Methods and uncertainties in bioclimatic envelope modelling under climate change. Prog Phys Geogr. 2006;30: 751–777. doi: 10.1177/0309133306071957
88. Qiao H, Soberón J, Peterson AT. No silver bullets in correlative ecological niche modelling: Insights from testing among many potential algorithms for niche estimation. Methods Ecol Evol. 2015;6: 1126–1136. doi: 10.1111/2041-210X.12397
89. Pearson RG, Raxworthy CJ, Nakamura M, Peterson AT. Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. J Chem Technol Metall. 2007;34: 102–117. doi: 10.1111/j.1365-2699.2006.01594.x
90. Wisz MS, Hijmans RJ, Li J, Peterson AT, Graham CH, Guisan A, et al. Effects of sample size on the performance of species distribution models. Divers Distrib. 2008;14: 763–773. doi: 10.1111/j.1472-4642.2008.00482.x
91. Muscarella R, Galante PJ, Soley-Guardia M, Boria RA, Kass JM, Uriarte M, et al. ENMeval: An R package for conducting spatially independent evaluations and estimating optimal model complexity for Maxentecological niche models. Methods Ecol Evol. 2014;5: 1198–1205. doi: 10.1111/2041-210X.12261
92. Shcheglovitova M, Anderson RP. Estimating optimal complexity for ecological niche models: A jackknife approach for species with small sample sizes. Ecol Modell. Elsevier B.V.; 2013;269: 9–17. doi: 10.1016/j.ecolmodel.2013.08.011
93. Phillips SJ, Dudík M. Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. 2008;31: 161–175. doi: 10.1111/j.2007.0906–7590.05203.x
94. Peterson AT, Papeş M, Soberón J. Rethinking receiver operating characteristic analysis applications in ecological niche modeling. Ecol Modell. 2008;213: 63–72. doi: 10.1016/j.ecolmodel.2007.11.008
95. Merow C, Smith MJ, Silander JA. A practical guide to MaxEnt for modeling species’ distributions: What it does, and why inputs and settings matter. Ecography (Cop). 2013;36: 1058–1069. doi: 10.1111/j.1600-0587.2013.07872.x
96. Mc Pherson J, Jetz W, Rogers D. The effects of species’ range sizes on the accuracy of distribution models. J Appl Ecol. 2004;41: 811–823.
97. Osorio-Olvera L. NicheToolBox R package. [Internet]. 2016.
98. Ortega-Andrade HM, Prieto-Torres DA, Gómez-Lora I, Lizcano DJ. Ecological and geographical analysis of the distribution of the Mountain Tapir (Tapirus pinchaque) in Ecuador: Importance of protected areas in future scenarios of global warming. PLoS One. 2015;10: 1–20. doi: 10.1371/journal.pone.0121137 25798851
99. Lizcaíno D, Prieto-Torres D, Ortega-Andrade M. Distribución de la danta de montaña (Tapirus pinchaque) en Colombia: importancia de las áreas no protegidas para la conservación en escenarios de cambio climático. In: Payán E, Lasso C, Castaño-Uribe C, editors. Conservación de grandes vertebrados en áreas no protegidas de Colombia, Venezuela y Brasil. Serie Edit. 2015. pp. 115–129.
100. R Core Team. R: A Language and Environment for Statistical Computing. In: R Foundation for Statistical Computing, Vienna, Austria. 2012.
101. Prieto-Torres DA, Pinilla-Buitrago G. Estimating the potential distribution and conservation priorities of Chironectes minimus (Zimmermann, 1780) (Didelphimorphia: Didelphidae). Therya. 2017;8: 131–144. doi: 10.12933/therya-17-478
102. Di Minin E, Veach V, Lehtomaki J, Pouzols F., Moilanen A. A quick introduction to Zonation. Unigrafia OY, Helsinki.; 2014.
103. Moilanen A. Landscape Zonation, benefit functions and target-based planning: Unifying reserve selection strategies. Biol Conserv. 2007;134: 571–579. doi: 10.1016/j.biocon.2006.09.008
104. Moilanen A, Anderson BJ, Eigenbrod F, Heinemeyer A, Roy DB, Gillings S, et al. Balancing alternative land uses in conservation prioritization. Ecol Appl. 2011;21: 1419–1426. doi: https://doi.org/10.1890/10-1865.1 21830691
105. Moilanen A. Two paths to a suboptimal solution—once more about optimality in reserve selection. Biol Conserv. 2008;141: 1919–1923. doi: 10.1016/j.biocon.2008.04.018
106. Moilanen A, Wintle BA, Elith J, Burgman M. Uncertainty analysis for regional-scale reserve selection. Conserv Biol. 2006;20: 1688–1697. doi: 10.1111/j.1523-1739.2006.00560.x 17181804
107. Lizarraga L, Monguillot J. Mapa de Huella Humana para Argentina. Argentina; 2018.
108. Sanderson EW, Jaiteh M, Levy MA, Redford KH, Wannebo A V, Woolmer G. The Human Footprint and the Last of the Wild. Bioscience. 2002;52: 891. doi: 10.1641/0006-3568(2002)052[0891:THFATL]2.0.CO;2
109. Faleiro F V., Machado RB, Loyola RD. Defining spatial conservation priorities in the face of land-use and climate change. Biol Conserv. Elsevier Ltd; 2013;158: 248–257. doi: 10.1016/j.biocon.2012.09.020
110. UNEP 2010. Report of the Tenth Meeting of the Conference of the Parties to the Convention on Biological Diversity. Held in Nagoya, Japan on 18–29 October 2010.
111. Geist HJ, Lambin EF. Proximate Causes and Underlying Driving Forces of Tropical Deforestation. Bioscience. 2002;52: 143. doi: 10.1641/0006-3568(2002)052[0143:pcaudf]2.0.co;2
112. Dobrovolski R, Loyola RD, Guilhaumon F, Gouveia SF, Diniz-filho JAF. Global agricultural expansion and carnivore conservation biogeography. Elsevier Ltd; 2013;165: 162–170. doi: 10.1016/j.biocon.2013.06.004
113. Segura C, Feriche M, Pleguezuelos JM, Santos X. Specialist and generalist species in habitat use: Implications for conservation assessment in snakes. J Nat Hist. 2007;41: 2765–2774. doi: 10.1080/00222930701664203
114. Giraudo A. Deforestación, defaunación como consecuencia de las actividades humanas en la llanura del Chaco Argentino. El Chaco sin bosques: La Pampa o el desierto del futuro. 2009. doi: 10.1017/CBO9781107415324.004
115. Hoyos LE, Cingolani AM, Zak MR, Vaieretti M V., Gorla DE, Cabido MR. Deforestation and precipitation patterns in the arid Chaco forests of central Argentina. Appl Veg Sci. 2013;16: 260–271. doi: 10.1111/j.1654-109X.2012.01218.x
116. Pacheco S, Malizia LR, Cayuela L. Effects of climate change on subtropical forests of South America. Trop Conserv Sci. 2010;3: 423–437. doi: 10.1177/194008291000300407
117. Schmidt M. Situación de la tierra en la provincia de Salta. Una aproximación al contexto previo al Ordenamiento Territorial de Bosques Nativos. Estud Rural. 2012;2.
118. Pacheco S, Brown AD. La biodiversidad de la ecorregión de las Yungas ¿es sustentable a largo plazo? In: Brown AD, Martínez Ortíz U, Acerbi M, Corcuera J, editors. La Situación Ambiental Argentina 2005. Fundación. 2006. pp. 59–61.
119. Brown AD, Malizia LR. Las Selvas Pedemontanas de las Yungas. Fundación Pro-Yungas. 2004
120. Zwiener VP, Padial AA, Marques MCM, Peterson AT, Faleiro F V, Loyola R. Planning for conservation and restoration under climate and land use change in the Brazilian Atlantic Forest. Divers Distrib. 2017; 1–12. doi: 10.1111/ddi.12588
121. Hansen MC, Potapov P V., Moore R, Hancher M, Turubanova SA, Tyukavina A, et al. High-resolution global maps of 21st-century forest cover change. Science (80-). 2013;342: 850–853. doi: 10.1126/science.1244693 24233722
Článek vyšel v časopise
PLOS One
2019 Číslo 9
- Tisícileté topoly, mokří psi, stárnoucí kočky a ospalé octomilky – „jednohubky“ z výzkumu 2024/41
- Jaké jsou aktuální trendy v léčbě karcinomu slinivky?
- Může hubnutí souviset s vyšším rizikem nádorových onemocnění?
- Menstruační krev má značný diagnostický potenciál, mimo jiné u diabetu
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
Nejčtenější v tomto čísle
- Graviola (Annona muricata) attenuates behavioural alterations and testicular oxidative stress induced by streptozotocin in diabetic rats
- CH(II), a cerebroprotein hydrolysate, exhibits potential neuro-protective effect on Alzheimer’s disease
- Comparison between Aptima Assays (Hologic) and the Allplex STI Essential Assay (Seegene) for the diagnosis of Sexually transmitted infections
- Assessment of glucose-6-phosphate dehydrogenase activity using CareStart G6PD rapid diagnostic test and associated genetic variants in Plasmodium vivax malaria endemic setting in Mauritania