Measurement and analysis of partial lightning currents in a head phantom
Autoři:
René Machts aff001; Alexander Hunold aff001; Christian Drebenstedt aff002; Michael Rock aff002; Carsten Leu aff003; Jens Haueisen aff001
Působiště autorů:
Institute of Biomedical Engineering and Informatics, Technische Universitaet Ilmenau, Ilmenau, Germany
aff001; Group for Lightning and Overvoltage Protection, Technische Universitaet Ilmenau, Ilmenau, Germany
aff002; Research Unit High-Voltage Technologies, Technische Universitaet Ilmenau, Ilmenau, Germany
aff003
Vyšlo v časopise:
PLoS ONE 14(9)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0223133
Souhrn
Direct lightning strikes to the human head can lead to various effects, ranging from burnings to death. The biological and physical mechanisms of a direct lightning strike in the human head are not well understood. The aim of this paper is to design an experimental setup to measure the spatial and temporal current distribution during a direct lightning strike to physical head phantoms to establish normative values for personal lightning protection equipment design and testing. We created head phantoms made of agarose, replicating the geometric and dielectric properties of scalp, skull, and intracranial volume. The bases of the three compartments were galvanically contacted via copper electrodes to measure the current per compartment. We used pulse generators to apply aperiodic voltage and current signals that modelled lightning components. Our experiments indicated that the scalp compartment was exposed to the current with a fraction of 80–90%. The brain and skull compartments were exposed between 6–13% and 3–6% of the total measured current respectively. In case of a flashover, most of the current (98–99%) flowed through the discharge channel. Unlike previous theoretical estimates and measurements in technical setups, we observed considerably longer times for the flashover to build up. In our experiments, the time to build up a fully formed flashover varied from approximately 30–700 μs. The observed current patterns in cases without and with flashover provided information on regions of possible damage in the human head. Consequently, we identified the phenomenon of a flashover as a potential mechanism for humans to survive a lightning strike. Our measured current distributions and amplitudes formed the base for normative values, which can be used in later experimental investigations regarding the possibilities of individual lightning protection equipment for humans.
Klíčová slova:
Brain damage – Dielectrics – Electric conductivity – Electrodes – Head – Scalp – Microelectrodes
Zdroje
1. Cooper MA (1980) Lightning injuries: Prognostic signs for death. Annals of Emergency Medicine 9 (3): 134–138. doi: 10.1016/s0196-0644(80)80268-x 7362103
2. Elsom DM (1996) Surviving being struck by lightning: A preliminary assessment of the risk of lightning injuries and death in the British Isles. Journal of Meteorology 21: 197–206.
3. Cooper MA, Andrews C, Holle R, Blumenthal R, Navarrete Aldana N. Lightning injuries. In: Wilderness Medicine; 2016. pp. 60–101.
4. Cooper MA, Holle RL. Reducing lightning injuries worldwide: Springer natural hazards; 2019.
5. Andrews CJ, Cooper MA, Darveniza M, Mackerras D. Lightning injuries. Electrical, medical, and legal aspects; 1992.
6. Andrews CJ, Reisner AD (2017) Neurological and neuropsychological consequences of electrical and lightning shock: review and theories of causation. Neural regeneration research 12 (5): 677–686. doi: 10.4103/1673-5374.206636 28616016
7. Freeman CB, Goyal M, Bourque PR (2004) MR imaging findings in delayed reversible myelopathy from lightning strike. AJNR. American journal of neuroradiology 25 (5): 851–853. 15140734
8. Mann H, Kozic Z, Boulos MI (1983) CT of lightning injury. AJNR. American journal of neuroradiology 4 (4): 976–977. 6410883
9. Stanley LD, Suss RA (1985) Intracerebral hematoma secondary to lightning stroke: Case report and review of the literature. Neurosurgery 16 (5): 686–688. doi: 10.1227/00006123-198505000-00020 4000443
10. Zack F, Rothschild MA, Wegener R (2007) Lightning strike–Mechanisms of energy eransfer, cause of death, types of injury. Deutsches Aerzteblatt International 104 (51–52): 3545. doi: 10.3238/arztebl.2008.0224a
11. Rakov VA, Uman MA. Lightning. Physics and effects. Cambridge, U.K., New York: Cambridge University Press; 2006.
12. Uman MA. The art and science of lightning protection. Cambridge: Cambridge University Press: 2010.
13. Cooray V. An introduction to lightning. Dordrecht: Springer Netherlands; 2015.
14. Elsom DM (2001) Deaths and injuries caused by lightning in the United Kingdom: Analyses of two databases. Atmospheric Research 56 (1–4): 325–334. doi: 10.1016/S0169-8095(00)00083-1
15. Price TG, Cooper MA (2013) 1906 CHAPTER 142 Electrical and Lightning Injuries.
16. DIN EN 1149–5:2018–11 (2018) Protective clothing—Electrostatic properties—Part 5: Material performance and design requirements. doi: 10.31030/2826749
17. Kitagawa N (1985) The nature of lightning discharges on human bodies and the basis for safety and protection. Conference Proceedings of the 18th ICLP VDE-Verlag, Berlin, 1985: 435–438. Available from: https://ci.nii.ac.jp/naid/10025827965/en/.
18. IEC 62305:2013 (2013) Protection against lightning.
19. Tidswell AT, Bagshaw AP, Holder DS, Yerworth RJ, Eadie L, S Murray et al. (2003) A comparison of headnet electrode arrays for electrical impedance tomography of the human head. Physiological measurement. 24 (2): 527–544. doi: 10.1088/0967-3334/24/2/363
20. Sperandio M, Guermandi M, Guerrieri R (2012) A four-shell diffusion phantom of the head for electrical impedance tomography. IEEE transactions on bio-medical engineering 59 (2): 383–389. doi: 10.1109/TBME.2011.2173197 22027364
21. Hunold A, Güllmar D, Haueisen J (2019) CT Dataset of a Human Head. doi: 10.5281/zenodo.3374839
22. Gabriel S, Lau RW, Gabriel C (1996) The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz. Phys. Med. Biol. 41 (11): 2251–2269. doi: 10.1088/0031-9155/41/11/002 8938025
23. Yamamoto T, Yamamoto Y (1976) Electrical properties of the epidermal stratum corneum. Medical and biological engineering 14 (2): 151–158. doi: 10.1007/BF02478741 940370
24. Birgersson U, Birgersson E, Aberg P, Nicander I, Ollmar S (2011) Non-invasive bioimpedance of intact skin: mathematical modeling and experiments. Physiological measurement 32 (1): 1–18. doi: 10.1088/0967-3334/32/1/001 21098911
25. IT'IS Foundation (2019) IT´IS Database for dielectric properties. Available from: https://itis.swiss/virtual-population/tissue-properties/database/; checked 23.08.2019
26. IEC 61000-4-5:2014 (2014) Electromagnetic compatibility (EMC)—Part 4–5: Testing and measurement techniques—Surge immunity test.
27. Kuffel E, Kuffel J, Zaengl WS High voltage engineering. Fundamentals. Oxford: Newnes; 2000.
28. Machts R, Hunold A, Leu C, Haueisen J, Rock M (2016) Development of a head-phantom and measurement setup for lightning effects. IEEE Engineering in Medicine and Biology Society. 2016: 3590–3593. doi: 10.1109/EMBC.2016.7591504 28269072
29. Küchler A. High voltage engineering. Fundamentals—Technology—Applications. Berlin, Heidelberg: Springer Vieweg; 2018.
30. Kind D, Kurrat M, Kopp TH (2016) Voltage-time characteristics of air gaps and insulation coordination—Survey of 100 years research. 2016 33rd International Conference on Lightning Protection (ICLP). pp. 1–8. doi: 10.1109/ICLP.2016.7791358
31. Bazelian ĖM, Raizer JP (1998) Spark discharge. CRC Press Taylor & Francis Group LLC. Boca Raton FL USA. (6.11.2 A creeping leader, 6.11.3 A leader along a conducting surface pp. 256–260)
32. Bhatt DL, Gaylor DC, C. Lee R (1990) Rhabdomyolysis due to pulsed electric fields. Plastic and reconstructive surgery. doi: 10.1097/00006534-199007000-00001 2359775
33. Bier M, Chen W, Bodnar E, Lee RC (2005) Biophysical injury mechanisms associated with lightning injury. NeuroRehabilitation 20 (1): 53–62. Available from: http://myweb.ecu.edu/bierm/papers/nre265.pdf. 15798357
34. Abramov GS, Bier M, Capelli-Schellpfeffer M, Lee RC (1996) Alteration in sensory nerve function following electrical shock. Burns 22 (8): 602–606. doi: 10.1016/s0305-4179(96)00055-1 8982537
35. Lee RC (1997) Injury by electrical forces: pathophysiology, manifestations, and therapy. Current problems in surgery 34 (9): 677–764. doi: 10.1016/S0011-3840(97)80007-X 9365421
36. Haueisen J, Tuch DS, Ramon C, Schimpf PH, Wedeen VJ, George JS et al. (2002) The influence of brain tissue anisotropy on human EEG and MEG. NeuroImage 15 (1): 159–166. doi: 10.1006/nimg.2001.0962 11771984
Článek vyšel v časopise
PLOS One
2019 Číslo 9
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Je libo čepici místo mozkového implantátu?
- Pomůže v budoucnu s triáží na pohotovostech umělá inteligence?
- AI může chirurgům poskytnout cenná data i zpětnou vazbu v reálném čase
- Nová metoda odlišení nádorové tkáně může zpřesnit resekci glioblastomů
Nejčtenější v tomto čísle
- Graviola (Annona muricata) attenuates behavioural alterations and testicular oxidative stress induced by streptozotocin in diabetic rats
- CH(II), a cerebroprotein hydrolysate, exhibits potential neuro-protective effect on Alzheimer’s disease
- Comparison between Aptima Assays (Hologic) and the Allplex STI Essential Assay (Seegene) for the diagnosis of Sexually transmitted infections
- Assessment of glucose-6-phosphate dehydrogenase activity using CareStart G6PD rapid diagnostic test and associated genetic variants in Plasmodium vivax malaria endemic setting in Mauritania
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy