Genome wide genetic dissection of wheat quality and yield related traits and their relationship with grain shape and size traits in an elite × non-adapted bread wheat cross
Autoři:
Ajay Kumar aff001; Eder E. Mantovani aff001; Senay Simsek aff001; Shalu Jain aff002; Elias M. Elias aff001; Mohamed Mergoum aff001
Působiště autorů:
Department of Plant Sciences, North Dakota State University, Fargo, ND, United States of America
aff001; Department of Plant Pathology, North Dakota State University, Fargo, ND, United States of America
aff002
Vyšlo v časopise:
PLoS ONE 14(9)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0221826
Souhrn
The genetic gain in yield and quality are two major targets of wheat breeding programs around the world. In this study, a high density genetic map consisting of 10,172 SNP markers identified a total of 43 genomic regions associated with three quality traits, three yield traits and two agronomic traits in hard red spring wheat (HRSW). When compared with six grain shape and size traits, the quality traits showed mostly independent genetic control (~18% common loci), while the yield traits showed moderate association (~53% common loci). Association of genomic regions for grain area (GA) and thousand-grain weight (TGW), with yield suggests that targeting an increase in GA may help enhancing wheat yield through an increase in TGW. Flour extraction (FE), although has a weak positive phenotypic association with grain shape and size, they do not share any common genetic loci. A major contributor to plant height was the Rht8 locus and the reduced height allele was associated with significant increase in grains per spike (GPS) and FE, and decrease in number of spikes per square meter and test weight. Stable loci were identified for almost all the traits. However, we could not find any QTL in the region of major known genes like GPC-B1, Ha, Rht-1, and Ppd-1. Epistasis also played an important role in the genetics of majority of the traits. In addition to enhancing our knowledge about the association of wheat quality and yield with grain shape and size, this study provides novel loci, genetic information and pre-breeding material (combining positive alleles from both parents) to enhance the cultivated gene pool in wheat germplasm. These resources are valuable in facilitating molecular breeding for wheat quality and yield improvement.
Klíčová slova:
Biology and life sciences – Genetics – Genetic loci – Quantitative trait loci – Phenotypes – Heredity – Genetic mapping – Variant genotypes – Epistasis – Organisms – Eukaryota – Plants – Grasses – Wheat – Nutrition – Diet – Food – Flour – Molecular biology – Molecular biology techniques – Gene mapping – Medicine and health sciences – Research and analysis methods
Zdroje
1. Kulwal P, Kumar N, Kumar A, Balyan HS, Gupta PK. Gene networks in hexaploid wheat: interacting quantitative trait loci for grain protein content. Funct Integr Genomic. 2005; 5:254–259.
2. Ma Z, Zhao D, Zhang C, Zhang Z, Xue S, Lin F et al. Molecular genetic analysis of five spike-related traits in wheat using RIL and immortalized F2 populations. Mol Genet Genomics. 2007; 277: 31–42. doi: 10.1007/s00438-006-0166-0 17033810
3. Kumar A, Elias EM, Gavami F, Xu X, Jain S, Manthey FA, et al. A major QTL for gluten strength in durum wheat (Triticum turgidum L. var. durum). J Cereal Science. 2013; 57: 21–29.
4. Liu G, Zhao Y, Gowda M, Longin CFH, Reif JC, Mette MF. Predicting hybrid performances for quality traits through genomic-assisted approaches in central European wheat. PLoS One. 2016; 11:e0158635. doi: 10.1371/journal.pone.0158635 27383841
5. Oury F, Chiron H, Pichon M, Giraud A, Bérard P, Faye A, et al. Reliability of indirect selection in determining the quality of bread wheat for French bread-baking. Agronomie. 1999; 19: 621–634.
6. Oury F-X, Chiron H, Faye A, Gardet O, Giraud A, Heumez E, et al. The prediction of bread wheat quality: joint use of the phenotypic information brought by technological tests and the genetic information brought by HMW and LMW glutenin subunits. Euphytica. 2010; 171(1): 87–109.
7. Trethowan RM, Pena RJ, Van Ginkel M. The effect of indirect tests for grain quality on the grain yield and industrial quality of bread wheat. Plant Breed. 2001; 120: 509–512.
8. Michel S, Gallee M, Löschenberger F, Buerstmayr H, Kummer C. Improving the baking quality of bread wheat using rapid tests and genomics: The prediction of dough rheological parameters by gluten peak indices and genomic selection models. Journal of Cereal Science. 2017; 77: 24–34
9. Michel S, Kummer C, Gallee M, Hellinger J, Ametz C, Akgöl B, et al. Improving the baking quality of bread wheat by genomic selection in early generations. Theor Appl Genet. 2018; 131(2):477–493. doi: 10.1007/s00122-017-2998-x 29063161
10. IWGSC (International Wheat Genome Sequencing Consortium). Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science 2018; 361:eaar7191. doi: 10.1126/science.aar7191 30115783
11. Georges F, Ray H. Genome editing of crops: a renewed opportunity for food security. GM Crops Food. 2017; 8: 1–12. doi: 10.1080/21645698.2016.1270489 28075688
12. Kumar A, Jain S, Elias EM, Ibrahim M, Sharma LK. An Overview of QTL Identification and Marker-Assisted Selection for Grain Protein Content in Wheat. In: Sengar R, Singh A (eds) Eco-friendly Agro-biological Techniques for Enhancing Crop Productivity. Springer, Singapore 2018. https://doi.org/10.1007/978-981-10-6934-5_11.
13. FAOSTAT. Agricultural Data. Food and Agriculture Organisation of the United Nations, Rome. 2014; Online at http://faostat.fao.org/
14. Feiz L, Martin JM, Giroux MJ. Relationship between wheat (Triticum aestivum L.) grain hardness and wet-milling quality. Cereal Chem. 2008; 85: 44–50.
15. Pasha I, Anjum FM, Morris CF. Grain hardness: a major determinant of wheat quality. Food Sci Tech Int. 2010; 16: 511–522.
16. Salmanowicz BP, Adamski T, Surma M, Kaczmarek Z, Krystkowiak K, Kuczyńska A et al. The relationship between grain hardness dough mixing parameters and bread-making quality in winter wheat. Int J Mol Sci. 2012; 13: 4186–4201. doi: 10.3390/ijms13044186 22605973
17. Ishikawa G, Nakamura K, Ito H, Saito M, Sato M, Jinno H, et al. Association mapping and validation of QTLs for flour yield in the soft winter wheat variety Kitahonami. PLoS One. 2014; 9:e111337. doi: 10.1371/journal.pone.0111337 25360619
18. Echeverry-Solarte M, Kumar A, Kianian SF, Simsek S, Alamri MS, Mantovani E, et al. New QTL alleles for quality-related traits in spring wheat revealed by RIL population derived from supernumerary × non-supernumerary spikelet genotypes. Theor Appl Genet. 2015; 128:893–912. doi: 10.1007/s00122-015-2478-0 25740563
19. Kumar N, Kulwal PL, Balyan HS, Gupta PK. QTL mapping for yield and yield contributing traits in two mapping populations of bread wheat. Mol. Breed. 2007; 19(2): 163–177.
20. Echeverry-Solarte M, Kumar A, Kianian SF, Mantovani E, Simsek S, Alamri MS, et al. Genome-wide genetic dissection of supernumerary spikelet and related traits in common wheat (Triticum aestivum L.). The Plant Genome. 2014; 7. doi: 10.3835/plantgenome2014.03.0013
21. Echeverry-Solarte M, Kumar A, Kianian SF, Mantovani E, McClean PE, Deckard EL, et al. Genome-wide mapping of spike-related and agronomic traits in a common wheat population derived from a supernumerary spikelet (SS) parent and an elite parent. The Plant genome. 2015; 8. doi: 10.3835/plantgenome2014.12.0089
22. Kumar A, Mantovani E, Seetan R, Soltani A, Echeverry-Solarte M, Jain S, et al. Dissection of genetic factors underlying wheat kernel characteristics in an elite × non-adapted cross using 90k SNP iSelect assay. The Plant Genome. 2016; 9. doi: 10.3835/plantgenome2015.09.0081
23. Boehm JD Jr, Ibba MI, Kiszonas AM, See DR, Skinner DZ, Morris CF. Identification of genotyping -by-sequencing sequence tags associated with milling performance and end-use quality traits in elite hard red spring wheat (Triticum aestivum L.). J Cereal Sci. 2017; 77: 73e83.
24. Dao HQ, Byrne PF, Reid SD, Haley SD, et al. Validation of quantitative trait loci for grain quality-related traits in a winter wheat mapping population. Euphytica. 2017; 213: 5. doi: 10.1007/s10681-016-1793-0
25. Tsilo TJ, Hareland GA, Chao S, Anderson JA. Genetic mapping and QTL analysis of flour color and milling yield related traits using recombinant inbred lines in hard red spring wheat. Crop Sci. 2011; 51:237–246.
26. Simons K, Anderson JA, Mergoum M, Faris JD, Klindworth DL, Xu SS, et al. Genetic mapping analysis of bread-making quality traits in spring wheat. Crop Sci. 2012; 52: 2182–2197.
27. Evers AD, Cox RI, Shaheedullah MZ, Withey RP. Predicting milling extraction rate by image analysis of wheat grains. Asp Appl Biol. 1990; 25:417–426.
28. Gegas VC, Nazari A, Griffiths S, Simmonds J, Fish L, Orford S, et al. A genetic framework for grain size and shape variation in wheat. Plant Cell. 2010; 22: 1046–1056. doi: 10.1105/tpc.110.074153 20363770
29. Russo MA, Ficco DBM, Laido G, Marone D, Papa R, Blanco A, et al. A dense durum wheat × T. dicoccum linkage map based on SNP markers for the study of seed morphology. Mol Breed. 2014; 34:1579–1597.
30. Wu QH, Chen YX, Zhou SH, Fu L, Chen JJ, Xiao Y, et al. High-Density Genetic Linkage Map Construction and QTL Mapping of Grain Shape and Size in the Wheat Population Yanda1817 × Beinong6. PLoS One. 2015; 12:10:e0118144.
31. Botwright TL, Condon AG, Rebetzke GJ, Richards RA. Field evaluation of early vigour for genetic improvement of grain yield in wheat. Aust J Agric Res. 2002; 53: 1137–1145.
32. Farahani HA, Moaveni P, Maroufi K. Effect of seed size on seedling production in wheat (Triticum aestivum L.). Adv Env Biol. 2011; 5: 1711–1715.
33. AACCI (American Association of Cereal Chemists International). Approved methods of the AACCI, 11th edn. The association, St. Paul, 2008.
34. Bass EJ. Wheat flour milling. In: Pomeranz Y, Editor. Wheat: Chemistry and technology, volume II, 3rd edn. American Association of Cereal Chemist, INC, St. Paul, Minnesota; 1988, pp. 1–68.
35. Doehlert DC, McMullen MS, Jannink J, Panigrahi S, Gu H, Riveland NR. Evaluation of oat kernel size uniformity. Crop Sci. 2004; 44: 1178–1186.
36. Institute SAS. SAS Online Doc, v. 9.1.2. SAS Inst., Cary, NC. 2004.
37. Wang S, Wong D, Forrest K, Allen A, Chao S, Huang BE, et al. Characterization of polyploid wheat genomic diversity using a high-density 90 000 single nucleotide polymorphism array. Plant Biotechnol J. 2014; 12: 787–796. doi: 10.1111/pbi.12183 24646323
38. Wang S, Basten CJ, Zeng ZB. Windows QTL Cartographer 2.5_011. North Carolina State University, Raleigh. 2012.
39. Meng L, Li HH, Zhang LY, Wang JK. QTL IciMapping: integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. Crop J. 2015; 3:269–283. doi: 10.1016/j.cj.2015.01.001
40. Li H, Ribaut JM, Li Z, Wang J. Inclusive composite interval mapping (ICIM) for digenic epistasis of quantitative traits in biparental populations. Theor Appl Genet. 2008; 116:243–260. doi: 10.1007/s00122-007-0663-5 17985112
41. Desiderio F, Guerra D, Rubiales D, Piarulli L, Pasquini, Mastrangelo AM, et al. Identification and mapping of quantitative trait loci for leaf rust resistance derived from a tetraploid wheat Triticum dicoccum accession. Mol Breed. 2014; 34:1659–1675.
42. Smith AB, Cullis BR, Appels R, Campbell AW, Cornish GB, Martin D, et al. The statistical analysis of quality traits in plant improvement programs with application to the mapping of milling yield in wheat. Aust J Agric Re. 2001; 52:1207–1219.
43. Maphosa L, Langridge P, Taylor H, Parent B, Emebiri LC, Kuchel H., et al. Genetic control of grain yield and grain physical characteristics in a bread wheat population grown under a range of environmental conditions. Theor Appl Genet. 2014; 127(7):1607–1624. doi: 10.1007/s00122-014-2322-y 24865506
44. El-Feki WM, Byrne PF, Reid SD, Lapitan NLV, Haley SD. Quantitative trait locus mapping for end-use quality traits in hard winter wheat under contrasting soil moisture levels. Crop Sci. 2013; 53:1953–1967.
45. Peleg Z, Cakmak I, Osturk L, Yazici A, Jun Y, Budak H, et al. Quantitative trait loci conferring grain mineral nutrient concentrations in durum wheat × wild emmer wheat RIL population. Theor Appl Genet. 2009; 119:353–369. doi: 10.1007/s00122-009-1044-z 19407982
46. Suprayogi Y, Pozniak CJ, Clarke FR, Clarke JM, Knox RE, Singh AK. Identification and validation of quantitative trait loci for grain protein concentration in adapted Canadian durum wheat populations. Theor Appl Genet. 2009; 119(3):437–448. doi: 10.1007/s00122-009-1050-1 19462147
47. Mann G, Diffey S, Cullis B, Azanza F, Martin D, Kelly A, et al. Genetic control of wheat quality: interactions between chromosomal regions determining protein content and composition, dough rheology, and sponge and dough baking properties. Theor Appl Genet. 2009; 118:1519–1537. doi: 10.1007/s00122-009-1000-y 19283360
48. Li J, Cui F, Ding A-M, Zhao C-H, Wang X-Q, Wang L, et al. QTL detection of seven quality traits in wheat using two related recombinant inbred line populations. Euphytica. 2012; 183: 207–226.
49. Blanco A, De Giovanni C, Laddomada B, Sciancalepore A, Simeone R, Devos KM, et al. Quantitative trait loci influencing grain protein content in tetraploid wheats. Plant Breed. 1996; 115: 310–316.
50. Blanco A, Pasqualone A, Troccoli A, Di Fonzo N, Simeone R. Detection of grain protein content QTLs across environments in tetraploid wheats. Plant Mol Biol. 2002; 48:615–623. doi: 10.1023/a:1014864230933 11999838
51. Patil RM, Oak MD, Tamhankar SA, Rao VS. Molecular mapping of QTLs for gluten strength as measured by sedimentation volume and mixograph in durum wheat (Triticum turgidum L. ssp. durum). J Cereal Sci. 2009; 49:378–386.
52. Kunert A, Naz AA, Dedeck O, Klaus Pillen, Léon J. AB-QTL analysis in winter wheat:I. Synthetic hexaploid wheat (T. turgidum ssp. dicoccoides · T. tauschii) as a source of favourable alleles for milling and baking quality traits. Theor Appl Genet. 2007; 115:683–695. doi: 10.1007/s00122-007-0600-7 17634917
53. Bogard M, Allard V, Martre P, Heumez E, Snape JW, Orford S, et al. Identifying wheat genomic regions for improving grain protein concentration independently of grain yield using multiple inter-related populations. Mol Breed. 2013; 31:1380–3743.
54. Uauy C, Distelfeld A, Fahima T, Blechl A, Dubcovsky J. A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science. 2006; 314:1298–1301. doi: 10.1126/science.1133649 17124321
55. Kumar J, Jaiswal V, Kumar A, Kumar N, Mir RR, Kumar S, et al. Introgression of a major gene for high grain protein content in some Indian bread wheat cultivars. Field Crops Res. 2011; 123:226–233.
56. Sourdille P, Perretant MR, Charmet G, Leroy P, Gauteir MF, Joudrier P, et al. Linkage between RFLP markers and genes affecting kernel hardness in wheat. Theo. Appl Genet. 1996; 93:580–586.
57. Morris CF. Puroindolines: the molecular genetic basis of wheat grain hardness. Plant Mol Biol. 2002; 48:633–647. doi: 10.1023/a:1014837431178 11999840
58. Gautier MF, Aleman ME, Guirao A, Marion D, Joudrier P. Triticum aestivum puroindolines, two basic cystine-rich seed proteins: cDNA sequence analysis and developmental gene expression. Plant Mol Biol. 1994; 25: 43–57. doi: 10.1007/bf00024197 7516201
59. Bhave M, Morris C. Molecular genetics of puroindolines and related genes: allelic diversity in wheat and other grasses. Plant Mol Biol. 2008; 66(3):205–219. doi: 10.1007/s11103-007-9263-7 18049798
60. Martin JM, Frohberg RC, Morris CF, Talbert LE, Giroux MJ. Milling and bread baking traits associated with puroindoline sequence type in hard red spring wheat. Crop Sci. 2001; 41:228–234.
61. Igrejas G, Leroy P, Charmet G, Gaborit T, Marion D, Branlard G. Mapping QTLs for grain hardness and puroindoline content in wheat (Triticum aestivum L.). Theor Appl Genet. 2002; 106:19–27. doi: 10.1007/s00122-002-0971-8 12582867
62. Groos C, Bervas E, Charmet G. Genetic analysis of hardness and bread-making related traits in a hard x hard bread wheat cross. J Cereal Sci. 2004; 40:93–100.
63. Heo H, Sherman J. Identification of QTL for grain protein content and grain hardness from winter wheat for genetic improvement of spring wheat. Plant Breeding Biotechnol. 2013; 4: 347–353.
64. Surma M, Adamski T, Banaszak Z, Kaczmarek Z, Kuczyńska A, Majcher M, et al. Effect of genotype environment and their interaction on quality parameters of wheat breeding lines of diverse grain hardness. Plant Prod Sci. 2012; 15:192–203.
65. Fan C, Xing Y, Mao H, Lu T, Han B, Xu C, et al. GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor Appl Genet. 2006; 112:1164–1171. doi: 10.1007/s00122-006-0218-1 16453132
66. Mao H, Sun S, Yao J, Wang C, Yu S, Xu C, et al. Linking differential domain functions of the GS3 protein to natural variation of grain size in rice. Proc Natl Acad Sci USA. 2010; 107: 19579–19584. doi: 10.1073/pnas.1014419107 20974950
67. Huang R, Jiang L, Zheng J, Wang T, Wang H, Huang Y, et al. Genetic bases of rice grain shape: so many genes, so little known. Trends Plant Sci. 2013; 18:218–226. doi: 10.1016/j.tplants.2012.11.001 23218902
68. Xu Y, Wang R, Tong Y, Zhao H, Xie Q, Liu D, et al. An D. Mapping QTLs for yield and nitrogen-related traits in wheat: influence of nitrogen and phosphorus fertilization on QTL expression. Theor Appl Genet. 2014; 127: 59–72. doi: 10.1007/s00122-013-2201-y 24072207
69. Gao FM, Wen WE, Liu JD, Rasheed A, Yin GH, Xia XC, et al. Genome-wide linkage mapping of QTL for yield components, plant height and yield-related physiological traits in the Chinese wheat cross Zhou 8425B/Chinese Spring. Front Plant Sci. 2015; 6:1099. doi: 10.3389/fpls.2015.01099 26734019
70. Assanga SO, Fuentealba M, Zhang G, Tan C, Dhakal S, Rudd JC, et al. Mapping of Quantitative trait loci for grain yield and its components in a US popular winter wheat TAM 111 using 90K SNPs. PLoS One. 2017; 12(12): e0189669. doi: 10.1371/journal.pone.0189669 29267314
71. Deng Z, Cui Y, Han Q, Fang W, Li J, Tian J. Discovery of consistent QTLs of wheat spike-related traits under nitrogen treatment at different development stages. Front Plant Sci. 2017; 8:2120. doi: 10.3389/fpls.2017.02120 29326735
72. Zanke C, Ling J, Plieske J, Kollers S, Ebmeyer E, Korzun V3, et al. Genetic architecture of main effect QTL for heading date in European winter wheat. Front Plant Sci. 2014; 5: 217. doi: 10.3389/fpls.2014.00217 24904613
73. Turner A, Beales J, Faure S, Dunford RP, Laurie DA. The pseudo-response regulator Ppd-H1 provides adaption to photoperiod in barley. Science. 2005; 310: 1031–1034. doi: 10.1126/science.1117619 16284181
74. Beales J, Turner A, Griffiths S, Snape J, Laurie DA. A Pseudo- Response Regulator is misexpressed in the photoperiod insensitive Ppd-D1a mutant of wheat (Triticum aestivum L.). Theor Appl Genet. 2007; 115:721–733. doi: 10.1007/s00122-007-0603-4 17634915
75. Guedira M, Xiong M, Hao YF, Johnson J, Harrison S, Marshall D, Brown-Guedira G. Heading date QTL in winter wheat (Triticum aestivum) coincide with major developmental genes VERNALIZATION1 and PHOTOPERIOD1. PLoS ONE. 2016; 11(5):e0154242. doi: 10.1371/journal.pone.0154242 27163605
76. He X, Singh PK, Dreisigacker S, Singh S, Lillemo M, Duveiller E. Dwarfing genes Rht-B1b and Rht-D1b are associated with both type I FHB susceptibility and low anther extrusion in two bread wheat populations. PLoS ONE. 2016; 11(9): e0162499. doi: 10.1371/journal.pone.0162499 27606928
77. Casebow R, Hadley C, Uppal R, Addisu M, Loddo S, Kowalski A, et al. Reduced height (Rht) alleles affect wheat grain quality. PLoS ONE; 2016, 11(5): e0156056. doi: 10.1371/journal.pone.0156056 27196288
78. Du Y, Chen L, Wang Y, Yang Z, Saeed I, Daoura BG, et al. The combination of dwarfing genes Rht4 and Rht8 reduced plant height, improved yield traits of rain fed bread wheat (Triticum aestivum L.). Field Crops Res. 2018; 215:149–155.
79. Borojevic K, Borojevic K. The transfer and history of ‘reduced height genes’ (Rht) in wheat from Japan to Europe. J Heredity. 2005; 96:455–459.
80. Lumpkin TA. How a gene from Japan revolutionized the world of wheat: CIMMYT’s quest for combining genes to mitigate threats to global food security. In: Ogihara Y, Takumi S, Handa H (eds) Advances in wheat genetics: from genome to field. Springer, Tokyo, pp 13–19. 2015; doi: 10.1007/978-4-431-55675-6_2
81. Zhai H, Feng Z, Li J, Liu X, Xiao S, Ni Z, et al. QTL analysis of spike morphological traits and plant height in winter wheat (Triticum aestivum L.) using a high-density SNP and SSR-based linkage map. Front Plant Sci. 2016; 7:1617. doi: 10.3389/fpls.2016.01617 27872629
82. Chai L, Chen Z, Bian R, Zhai H, Cheng X, Peng H, et al. Dissection of two quantitative trait loci with pleiotropic effects on plant height and spike length linked in coupling phase on the short arm of chromosome 2D of common wheat (Triticum aestivum L.). Theor Appl Genet. 2018; 131(12):2621–2637. doi: 10.1007/s00122-018-3177-4 30267114
83. Flintham J E, Borner A, Worland AJ, Gale MD. Optimizing wheat grain yield: effects of Rht (gibberellin-insensitive) dwarfing genes. J Agr Sci. 1997; 128, 11–25.
84. Cui F, Ding A, Li J, Zhao C, Wang L, Wang X, et al. QTL detection of seven spike-related traits and their genetic correlations in wheat using two related RIL populations. Euphytica. 2012; 186:177–192.
85. Evans LT. Feeding the ten billion. Plant and population growth. Cambridge Univ. Press, Cambridge, UK. 1998.
86. Guedira M, Brown-Guedira G, Van Sanford D, Sneller C, Souza E, Marshall D. Distribution of Rht genes in modern and historic winter wheat cultivars from the Eastern and Central USA. Crop Sci. 2010; 50:1811–1822.
87. Zhang X, Yang S, Zhou Y, He Z, Xia X. Distribution of the Rht-B1b, Rht-1b and Rht8 reduced height genes in autumn-sown Chinese wheats detected by molecular markers. Euphytica. 2006; 152:109.
88. Rebetzke GJ, Bonnett DG, Ellis MH. Combining gibberellic acid‐sensitive and insensitive dwarfing genes in breeding of higher‐yielding, sesqui‐dwarf wheats. Field Crops Res. 2012; 127: 17–25.
89. Marshall DR, Ellison FW, Mares DJ. Effects of grain shape and size on milling yields in wheat. 1. Theoretical-analysis based on simple geometric-models Aus J Agri Res. 1984; 35:619–630.
90. Marshall DR, Mares DJ, Moss HJ, Ellison FW. Effects of grain shape and size on milling yields in wheat. II. Experimental studies. Aus J Agri Res. 1986; 37:331–342.
91. Bergman CJ, Gualberto DG, Campbell KG, Sorrells ME, Finney PL. Kernel morphology variation in a population derived from a soft by hard wheat cross and associations with end-use quality traits. J Food Qual. 2000; 23:391–407.
92. Doust AN, Lukens L, Olsen KM, Mauro-Herrera M, Meyer A, Rogers K. Beyond the single gene: How epistasis and gene-by-environment effects influence crop domestication. Proc Natl Acad Sci USA. 2014; 111:6178–6183. doi: 10.1073/pnas.1308940110 24753598
93. Bocianowski J. Estimation of epistasis in doubled haploid barley populations considering interactions between all possible marker pairs. Euphytica. 2014; 196:105–115.
94. Monir MM, Zhu J. Dominance and epistasis interactions revealed as important variants for leaf traits of maize NAM population. Front Plant Sci. 2018; 9:627. doi: 10.3389/fpls.2018.00627 29967625
95. Xing W, Zhao H, Zou D. Detection of main-effect and epistatic QTL for yield-related traits in rice under drought stress and normal conditions. Can J Plant Sci. 2014; 94(4):633–641.
96. Yadav S, Sandhu N, Majumder RR, Dixit S, Kumar S, Singh SP, et al. Epistatic interactions of major effect drought QTLs with genetic background loci determine grain yield of rice under drought stress. Scientific Reports. 2019; 9:2616. doi: 10.1038/s41598-019-39084-7 30796339
97. Gupta PK, Balyan HS, Kulwal PL, Kumar N, Mir RR, Mohan A, et al. QTL analysis for some quantitative traits in bread wheat. J Zhejiang Univ Sci B. 2007; 8:807–814. doi: 10.1631/jzus.2007.B0807 17973342
98. Jiang Y, Reif JC. Modeling epistasis in genomic selection. Genetics. 2015; 201:759–768. doi: 10.1534/genetics.115.177907 26219298
Článek vyšel v časopise
PLOS One
2019 Číslo 9
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Je libo čepici místo mozkového implantátu?
- Pomůže v budoucnu s triáží na pohotovostech umělá inteligence?
- AI může chirurgům poskytnout cenná data i zpětnou vazbu v reálném čase
- Nová metoda odlišení nádorové tkáně může zpřesnit resekci glioblastomů
Nejčtenější v tomto čísle
- Graviola (Annona muricata) attenuates behavioural alterations and testicular oxidative stress induced by streptozotocin in diabetic rats
- CH(II), a cerebroprotein hydrolysate, exhibits potential neuro-protective effect on Alzheimer’s disease
- Comparison between Aptima Assays (Hologic) and the Allplex STI Essential Assay (Seegene) for the diagnosis of Sexually transmitted infections
- Assessment of glucose-6-phosphate dehydrogenase activity using CareStart G6PD rapid diagnostic test and associated genetic variants in Plasmodium vivax malaria endemic setting in Mauritania