Osmolytes ameliorate the effects of stress in the absence of the heat shock protein Hsp104 in Saccharomyces cerevisiae
Autoři:
Arnab Bandyopadhyay aff001; Indrani Bose aff002; Krishnananda Chattopadhyay aff001
Působiště autorů:
Structural Biology & Bio-Informatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
aff001; Department of Biology, Western Carolina University, Cullowhee, North Carolina, United States of America
aff002
Vyšlo v časopise:
PLoS ONE 14(9)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0222723
Souhrn
Aggregation of the prion protein has strong implications in the human prion disease. Sup35p is a yeast prion, and has been used as a model protein to study the disease mechanism. We have studied the pattern of Sup35p aggregation inside live yeast cells under stress, by using confocal microscopy, fluorescence activated cell sorting and western blotting. Heat shock proteins are a family of proteins that are produced by yeast cells in response to exposure to stressful conditions. Many of the proteins behave as chaperones to combat stress-induced protein misfolding and aggregation. In spite of this, yeast also produce small molecules called osmolytes during stress. In our work, we tried to find the reason as to why yeast produce osmolytes and showed that the osmolytes are paramount to ameliorate the long-term effects of lethal stress in Saccharomyces cerevisiae, either in the presence or absence of Hsp104p.
Klíčová slova:
Biology and life sciences – Organisms – Eukaryota – Fungi – Yeast – Saccharomyces – Saccharomyces cerevisiae – Cell biology – Osmotic shock – Cell processes – Cellular stress responses – Heat shock response – Molecular biology – Macromolecular structure analysis – Protein folding – Biochemistry – Proteins – Protein structure – Research and analysis methods – Animal studies – Experimental organism systems – Model organisms – Yeast and fungal models – Microscopy – Light microscopy – Confocal microscopy – Physical sciences – Chemistry – Chemical compounds – Organic compounds – Carbohydrates – Disaccharides – Trehalose – Organic chemistry – Medicine and health sciences – Infectious diseases – Prion diseases – Zoonoses
Zdroje
1. Takalo M, Salminen A, Soininen H, Hiltunen M, Haapasalo A (2013) Protein aggregation and degradation mechanisms in neurodegenerative diseases. American journal of neurodegenerative disease 2: 1. 23516262
2. Spillantini MG, Crowther RA, Jakes R, Hasegawa M, Goedert M (1998) α-Synuclein in filamentous inclusions of Lewy bodies from Parkinson’s disease and dementia with Lewy bodies. Proceedings of the National Academy of Sciences 95: 6469–6473.
3. Shaw C, Enayat Z, Chioza B, Al‐Chalabi A, Radunovic A, et al. (1998) Mutations in all five exons of SOD‐1 may cause ALS. Annals of neurology 43: 390–394. doi: 10.1002/ana.410430319 9506558
4. Hsich G, Kenney K, Gibbs CJ Jr, Lee KH, Harrington MG (1996) The 14-3-3 brain protein in cerebrospinal fluid as a marker for transmissible spongiform encephalopathies. New England Journal of Medicine 335: 924–930. doi: 10.1056/NEJM199609263351303 8782499
5. Hill A, Butterworth R, Joiner S, Jackson G, Rossor M, et al. (1999) Investigation of variant Creutzfeldt-Jakob disease and other human prion diseases with tonsil biopsy samples. The Lancet 353: 183–189.
6. Hsiao K, Dlouhy SR, Farlow MR, Cass C, Da Costa M, et al. (1992) Mutant prion proteins in Gerstmann-Sträussler-Scheinker disease with neurofibrillary tangles. Nature genetics 1: 68. doi: 10.1038/ng0492-68 1363810
7. Collins S, McLean C, Masters C (2001) Gerstmann–Sträussler–Scheinker syndrome, fatal familial insomnia, and kuru: a review ofthese less common human transmissiblespongiform encephalopathies. Journal of Clinical Neuroscience 8: 387–397. doi: 10.1054/jocn.2001.0919 11535002
8. Foster J, Hope J, Fraser H (1993) Transmission of bovine spongiform encephalopathy to sheep and goats. The Veterinary Record 133: 339–341. doi: 10.1136/vr.133.14.339 8236676
9. Cobb NJ, Sönnichsen FD, Mchaourab H, Surewicz WK (2007) Molecular architecture of human prion protein amyloid: A parallel, in-register β-structure. Proceedings of the National Academy of Sciences 104: 18946–18951.
10. Tyedmers J, Mogk A, Bukau B (2010) Cellular strategies for controlling protein aggregation. Nature reviews Molecular cell biology 11: 777. doi: 10.1038/nrm2993 20944667
11. Hartl FU, Bracher A, Hayer-Hartl M (2011) Molecular chaperones in protein folding and proteostasis. Nature 475: 324. doi: 10.1038/nature10317 21776078
12. Ma J, Pazos IM, Gai F (2014) Microscopic insights into the protein-stabilizing effect of trimethylamine N-oxide (TMAO). Proceedings of the National Academy of Sciences 111: 8476–8481.
13. Street TO, Bolen DW, Rose GD (2006) A molecular mechanism for osmolyte-induced protein stability. Proceedings of the National Academy of Sciences 103: 13997–14002.
14. Kaushik JK, Bhat R (2003) Why is trehalose an exceptional protein stabilizer? An analysis of the thermal stability of proteins in the presence of the compatible osmolyte trehalose. Journal of Biological Chemistry 278: 26458–26465. doi: 10.1074/jbc.M300815200 12702728
15. Botstein D, Chervitz SA, Cherry M (1997) Yeast as a model organism. Science 277: 1259–1260. doi: 10.1126/science.277.5330.1259 9297238
16. King C-Y, Diaz-Avalos R (2004) Protein-only transmission of three yeast prion strains. Nature 428: 319. doi: 10.1038/nature02391 15029195
17. Telling GC, Scott M, Mastrianni J, Gabizon R, Torchia M, et al. (1995) Prion propagation in mice expressing human and chimeric PrP transgenes implicates the interaction of cellular PrP with another protein. Cell 83: 79–90. doi: 10.1016/0092-8674(95)90236-8 7553876
18. Glover JR, Kowal AS, Schirmer EC, Patino MM, Liu J-J, et al. (1997) Self-seeded fibers formed by Sup35, the protein determinant of [PSI+], a heritable prion-like factor of S. cerevisiae. Cell 89: 811–819. doi: 10.1016/s0092-8674(00)80264-0 9182769
19. Yeh E, Yang C, Chin E, Maddox P, Salmon ED, et al. (2000) Dynamic positioning of mitotic spindles in yeast: role of microtubule motors and cortical determinants. Molecular biology of the cell 11: 3949–3961. doi: 10.1091/mbc.11.11.3949 11071919
20. Abelson JN, Simon MI, Guthrie C, Fink GR (2004) Guide to yeast genetics and molecular biology: Gulf Professional Publishing.
21. Chung C, Niemela SL, Miller RH (1989) One-step preparation of competent Escherichia coli: transformation and storage of bacterial cells in the same solution. Proceedings of the National Academy of Sciences 86: 2172–2175.
22. Hanahan D, Jessee J, Bloom FR (1991) [4] Plasmid transformation of Escherichia coli and other bacteria. Methods in enzymology: Elsevier. pp. 63–113.
23. Gietz RD, Woods RA (2002) Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method. Methods in enzymology: Elsevier. pp. 87–96.
24. Hidalgo IH, Fleming T, Eckstein V, Herzig S, Nawroth PP, et al. (2016) Characterization of aggregate load and pattern in living yeast cells by flow cytometry. BioTechniques 61: 137–148. doi: 10.2144/000114452 27625208
25. Greene LE, Park Y-N, Masison DC, Eisenberg E (2009) Application of GFP-labeling to study prions in yeast. Protein and peptide letters 16: 635–641. doi: 10.2174/092986609788490221 19519522
26. Gregoire S, Irwin J, Kwon I (2012) Techniques for monitoring protein misfolding and aggregation in vitro and in living cells. Korean Journal of Chemical Engineering 29: 693–702. doi: 10.1007/s11814-012-0060-x 23565019
27. Sethi R, Iyer SS, Das E, Roy I (2018) Discrete roles of trehalose and Hsp104 in inhibition of protein aggregation in yeast cells. FEMS yeast research 18: foy058.
28. Singer MA, Lindquist S (1998) Thermotolerance in Saccharomyces cerevisiae: the Yin and Yang of trehalose. Trends in biotechnology 16: 460–468. 9830154
29. Singer MA, Lindquist S (1998) Multiple effects of trehalose on protein folding in vitro and in vivo. Molecular cell 1: 639–648. 9660948
30. Kim S-H, Yan Y-B, Zhou H-M (2006) Role of osmolytes as chemical chaperones during the refolding of aminoacylase. Biochemistry and cell biology 84: 30–38. doi: 10.1139/o05-148 16462887
31. Tanaka M, Machida Y, Niu S, Ikeda T, Jana NR, et al. (2004) Trehalose alleviates polyglutamine-mediated pathology in a mouse model of Huntington disease. Nature medicine 10: 148. doi: 10.1038/nm985 14730359
32. Shaked GM, Engelstein R, Avraham I, Kahana E, Gabizon R (2003) Dimethyl sulfoxide delays PrPsc accumulation and disease symptoms in prion-infected hamsters. Brain research 983: 137–143. doi: 10.1016/s0006-8993(03)03045-2 12914974
33. Das A, Basak P, Pramanick A, Majumder R, Pal D, et al. (2019) Trehalose mediated stabilisation of cellobiase aggregates from the filamentous fungus Penicillium chrysogenum. International journal of biological macromolecules 127: 365–375. doi: 10.1016/j.ijbiomac.2019.01.062 30658143
34. Burg MB, Ferraris JD (2008) Intracellular organic osmolytes: function and regulation. Journal of Biological Chemistry 283: 7309–7313. doi: 10.1074/jbc.R700042200 18256030
35. Sabaté R, Villar-Piqué A, Espargaró A, Ventura S (2011) Temperature dependence of the aggregation kinetics of Sup35 and Ure2p yeast prions. Biomacromolecules 13: 474–483. doi: 10.1021/bm201527m 22176525
36. Haslbeck M, Vierling E (2015) A first line of stress defense: small heat shock proteins and their function in protein homeostasis. Journal of molecular biology 427: 1537–1548. doi: 10.1016/j.jmb.2015.02.002 25681016
37. Moseley PL (1997) Heat shock proteins and heat adaptation of the whole organism. Journal of applied physiology 83: 1413–1417. doi: 10.1152/jappl.1997.83.5.1413 9375300
38. Kayingo G, Kilian SG, Prior BA (2001) Conservation and release of osmolytes by yeasts during hypo-osmotic stress. Archives of microbiology 177: 29–35. doi: 10.1007/s00203-001-0358-2 11797041
39. Das A, Basak P, Pattanayak R, Kar T, Majumder R, et al. (2017) Trehalose induced structural modulation of Bovine Serum Albumin at ambient temperature. International journal of biological macromolecules 105: 645–655. doi: 10.1016/j.ijbiomac.2017.07.074 28735008
40. Chebotareva N, Kurganov B, Livanova N (2004) Biochemical effects of molecular crowding. Biochemistry (Moscow) 69: 1239.
41. Papp E, Csermely P (2006) Chemical chaperones: mechanisms of action and potential use. Molecular Chaperones in Health and Disease: Springer. pp. 405–416.
42. Conlin LK, Nelson HC (2007) The natural osmolyte trehalose is a positive regulator of the heat-induced activity of yeast heat shock transcription factor. Molecular and cellular biology 27: 1505–1515. doi: 10.1128/MCB.01158-06 17145780
43. Jain NK, Roy I (2009) Effect of trehalose on protein structure. Protein Science 18: 24–36. doi: 10.1002/pro.3 19177348
44. Chang BS, Kendrick BS, Carpenter JF (1996) Surface-induced denaturation of proteins during freezing and its inhibition by surfactants. Journal of pharmaceutical sciences 85: 1325–1330. doi: 10.1021/js960080y 8961147
45. Hightower LE (1991) Heat shock, stress proteins, chaperones, and proteotoxicity. Cell 66: 191–197. doi: 10.1016/0092-8674(91)90611-2 1855252
46. Martin J, Horwich AL, Hartl FU (1992) Prevention of protein denaturation under heat stress by the chaperonin Hsp60. Science 258: 995–998. doi: 10.1126/science.1359644 1359644
47. Wang A, Bolen D (1997) A naturally occurring protective system in urea-rich cells: mechanism of osmolyte protection of proteins against urea denaturation. Biochemistry 36: 9101–9108. doi: 10.1021/bi970247h 9230042
48. Tarczynski MC, Jensen RG, Bohnert HJ (1993) Stress protection of transgenic tobacco by production of the osmolyte mannitol. Science 259: 508–510. doi: 10.1126/science.259.5094.508 17734171
49. Feder ME, Hofmann GE (1999) Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annual review of physiology 61: 243–282. doi: 10.1146/annurev.physiol.61.1.243 10099689
50. Wang W, Vinocur B, Shoseyov O, Altman A (2004) Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends in plant science 9: 244–252. doi: 10.1016/j.tplants.2004.03.006 15130550
51. Pasantes-Morales H, Quesada O, Moran J (1998) Taurine: an osmolyte in mammalian tissues. Taurine 3: Springer. pp. 209–217.
52. Desplats P, Folco E, Salerno GL (2005) Sucrose may play an additional role to that of an osmolyte in Synechocystis sp. PCC 6803 salt-shocked cells. Plant Physiology and Biochemistry 43: 133–138. doi: 10.1016/j.plaphy.2005.01.008 15820660
53. Alexandre H, Plourde L, Charpentier C, François J (1998) Lack of correlation between trehalose accumulation, cell viability and intracellular acidification as induced by various stresses in Saccharomyces cerevisiae. Microbiology 144: 1103–1111. doi: 10.1099/00221287-144-4-1103 9579083
54. Tapia H, Young L, Fox D, Bertozzi CR, Koshland D (2015) Increasing intracellular trehalose is sufficient to confer desiccation tolerance to Saccharomyces cerevisiae. Proceedings of the National Academy of Sciences 112: 6122–6127.
55. Gibney PA, Schieler A, Chen JC, Rabinowitz JD, Botstein D (2015) Characterizing the in vivo role of trehalose in Saccharomyces cerevisiae using the AGT1 transporter. Proceedings of the National Academy of Sciences 112: 6116–6121.
56. Ratnakumar S, Tunnacliffe A (2006) Intracellular trehalose is neither necessary nor sufficient for desiccation tolerance in yeast. FEMS yeast research 6: 902–913. doi: 10.1111/j.1567-1364.2006.00066.x 16911512
57. Bandara A, Fraser S, Chambers PJ, Stanley GA (2009) Trehalose promotes the survival of Saccharomyces cerevisiae during lethal ethanol stress, but does not influence growth under sublethal ethanol stress. FEMS yeast research 9: 1208–1216. doi: 10.1111/j.1567-1364.2009.00569.x 19799639
58. Jung G, Masison DC (2001) Guanidine hydrochloride inhibits Hsp104 activity in vivo: a possible explanation for its effect in curing yeast prions. Current microbiology 43: 7–10. doi: 10.1007/s002840010251 11375656
59. Eaglestone SS, Ruddock LW, Cox BS, Tuite MF (2000) Guanidine hydrochloride blocks a critical step in the propagation of the prion-like determinant [PSI+] of Saccharomyces cerevisiae. Proceedings of the National Academy of Sciences 97: 240–244.
60. Ferreira PC, Ness F, Edwards SR, Cox BS, Tuite MF (2001) The elimination of the yeast [PSI+] prion by guanidine hydrochloride is the result of Hsp104 inactivation. Molecular microbiology 40: 1357–1369. doi: 10.1046/j.1365-2958.2001.02478.x 11442834
61. Ness F, Ferreira P, Cox BS, Tuite MF (2002) Guanidine hydrochloride inhibits the generation of prion “seeds” but not prion protein aggregation in yeast. Molecular and cellular biology 22: 5593–5605. doi: 10.1128/MCB.22.15.5593-5605.2002 12101251
62. Byrne LJ, Cox BS, Cole DJ, Ridout MS, Morgan BJ, et al. (2007) Cell division is essential for elimination of the yeast [PSI+] prion by guanidine hydrochloride. Proceedings of the National Academy of Sciences 104: 11688–11693.
63. Halfmann R, Alberti S, Krishnan R, Lyle N, O'Donnell CW, et al. (2011) Opposing effects of glutamine and asparagine govern prion formation by intrinsically disordered proteins. Molecular cell 43: 72–84. doi: 10.1016/j.molcel.2011.05.013 21726811
64. Ross CA, Poirier MA (2004) Protein aggregation and neurodegenerative disease. Nature medicine 10: S10. doi: 10.1038/nm1066 15272267
65. Aguzzi A, O'connor T (2010) Protein aggregation diseases: pathogenicity and therapeutic perspectives. Nature reviews Drug discovery 9: 237. doi: 10.1038/nrd3050 20190788
66. Mactier RA, Khanna R (1989) Absorption of fluid and solutes from the peritoneal cavity: Theoretic and therapeutic implications and applications. Asaio Journal 35: 122–131.
67. Khan SH, Ahmad N, Ahmad F, Kumar R (2010) Naturally occurring organic osmolytes: from cell physiology to disease prevention. IUBMB life 62: 891–895. doi: 10.1002/iub.406 21190292
68. Dickenmann M, Oettl T, Mihatsch MJ (2008) Osmotic nephrosis: acute kidney injury with accumulation of proximal tubular lysosomes due to administration of exogenous solutes. American Journal of Kidney Diseases 51: 491–503. doi: 10.1053/j.ajkd.2007.10.044 18295066
Článek vyšel v časopise
PLOS One
2019 Číslo 9
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Je libo čepici místo mozkového implantátu?
- Pomůže v budoucnu s triáží na pohotovostech umělá inteligence?
- AI může chirurgům poskytnout cenná data i zpětnou vazbu v reálném čase
- Nová metoda odlišení nádorové tkáně může zpřesnit resekci glioblastomů
Nejčtenější v tomto čísle
- Graviola (Annona muricata) attenuates behavioural alterations and testicular oxidative stress induced by streptozotocin in diabetic rats
- CH(II), a cerebroprotein hydrolysate, exhibits potential neuro-protective effect on Alzheimer’s disease
- Comparison between Aptima Assays (Hologic) and the Allplex STI Essential Assay (Seegene) for the diagnosis of Sexually transmitted infections
- Assessment of glucose-6-phosphate dehydrogenase activity using CareStart G6PD rapid diagnostic test and associated genetic variants in Plasmodium vivax malaria endemic setting in Mauritania
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy