Structural characteristics of lipocalin allergens: Crystal structure of the immunogenic dog allergen Can f 6
Autoři:
Gina M. Clayton aff001; Janice White aff001; Schuyler Lee aff001; John W. Kappler aff001; Sanny K. Chan aff001
Působiště autorů:
Department of Biomedical Research, National Jewish Health, Denver, Colorado, United States of America
aff001; Program in Structural Biology and Biochemistry, University of Colorado Denver School of Medicine, Aurora, Colorado, United States of America
aff002; Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, Colorado, United States of America
aff003; Department of Immunology and Microbiology, University of Colorado Denver School of Medicine, Aurora, Colorado, United States of America
aff004; Department of Pediatrics, University of Colorado Denver School of Medicine, Aurora, Colorado, United States of America
aff005; Division of Pediatric Allergy-Immunology, National Jewish Health, Denver, Colorado, United States of America
aff006
Vyšlo v časopise:
PLoS ONE 14(9)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0213052
Souhrn
Lipocalins represent the most important protein family of the mammalian respiratory allergens. Four of the seven named dog allergens are lipocalins: Can f 1, Can f 2, Can f 4, and Can f 6. We present the structure of Can f 6 along with data on the biophysical and biological activity of this protein in comparison with other animal lipocalins. The Can f 6 structure displays the classic lipocalin calyx-shaped ligand binding cavity within a central β-barrel similar to other lipocalins. Despite low sequence identity between the different dog lipocalin proteins, there is a high degree of structural similarity. On the other hand, Can f 6 has a similar primary sequence to cat, horse, mouse lipocalins as well as a structure that may underlie their cross reactivity. Interestingly, the entrance to the ligand binding pocket is capped by a His instead of the usually seen Tyr that may help select its natural ligand binding partner. Our highly pure recombinant Can f 6 is able to bind to human IgE (hIgE) demonstrating biological antigenicity.
Klíčová slova:
Physical sciences – Physics – Condensed matter physics – Solid state physics – Crystallography – Crystal structure – Biology and life sciences – Organisms – Eukaryota – Animals – Vertebrates – Amniotes – Mammals – Dogs – Cats – Allergies – Allergens – Molecular biology – Macromolecular structure analysis – Protein structure comparison – Biochemistry – Proteins – Protein structure – Post-translational modification – Phosphorylation – Glycobiology – Glycosylation – Medicine and health sciences – Clinical medicine – Clinical immunology – Immunology – Research and analysis methods – Crystallographic techniques – Crystal structure refinement
Zdroje
1. Hilger C, Kuehn A, Hentges F. Animal lipocalin allergens. Curr Allergy Asthma Rep. 2012;12: 438–447. doi: 10.1007/s11882-012-0283-2 22791068
2. Jensen-Jarolim E, Pacios LF, Bianchini R, Hofstetter G, Roth-Walter F. Structural similarities of human and mammalian lipocalins, and their function in innate immunity and allergy. Allergy Eur J Allergy Clin Immunol. 2015;71: 286–294. doi: 10.1111/all.12797 26497994
3. Nilsson OB, Van Hage M, Grönlund H. Mammalian-derived respiratory allergens—Implications for diagnosis and therapy of individuals allergic to furry animals. Methods. Elsevier Inc.; 2014;66: 86–95. doi: 10.1016/j.ymeth.2013.09.002 24041755
4. Niemi MH, Rytkönen-Nissinen M, Miettinen I, Jänis J, Virtanen T, Rouvinen J. Dimerization of lipocalin allergens. Sci Rep. Nature Publishing Group; 2015;5: 13841. doi: 10.1038/srep13841 26346541
5. Chan SK, Leung DYM. Dog and Cat Allergies: Current State of Diagnostic Approaches and Challenges. Allergy Asthma Immunol Res. 2018;10: 97. doi: 10.4168/aair.2018.10.2.97 29411550
6. Asher MI, Montefort S, Björkstén B, Lai CK, Strachan DP, Weiland SK, et al. Worldwide time trends in the prevalence of symptoms of asthma, allergic rhinoconjunctivitis, and eczema in childhood: ISAAC Phases One and Three repeat multicountry cross-sectional surveys. Lancet. 2006;368: 733–743. doi: 10.1016/S0140-6736(06)69283-0 16935684
7. Konradsen JR, Fujisawa T, Van Hage M, Hedlin G, Hilger C, Kleine-Tebbe J, et al. Allergy to furry animals: New insights, diagnostic approaches, and challenges. J Allergy Clin Immunol. 2015;135: 616–625. doi: 10.1016/j.jaci.2014.08.026 25282018
8. Ukleja-Sokołowska N, Gawrońska-Ukleja E, Żbikowska-Gotz M, Socha E, Lis K, Sokołowski Ł, et al. Analysis of feline and canine allergen components in patients sensitized to pets. Allergy, Asthma Clin Immunol. BioMed Central; 2016;12: 61. doi: 10.1186/s13223-016-0167-4 27956908
9. Arshad SH, Tariq SM, Matthews S, Hakim E. Sensitization to Common Allergens and Its Association With Allergic Disorders at Age 4 Years: A Whole Population Birth Cohort Study. Pediatrics. 2001;108: e33–e33. doi: 10.1542/peds.108.2.e33 11483843
10. Käck U, Asarnoj A, Grönlund H, Borres MP, van Hage M, Lilja G, et al. Molecular allergy diagnostics refine characterization of children sensitized to dog dander. J Allergy Clin Immunol. 2018; doi: 10.1016/j.jaci.2018.05.012 29852259
11. Nilsson OB, Binnmyr J, Zoltowska A, Saarne T, van Hage M, Grönlund H. Characterization of the dog lipocalin allergen Can f 6: The role in cross-reactivity with cat and horse. Allergy Eur J Allergy Clin Immunol. 2012;67: 751–757. doi: 10.1111/j.1398-9995.2012.02826.x 22515174
12. Wang Y, Li L, Song W, Zhou Y, Cao M. Canis familiaris allergen Can f 6: expression, purification and analysis of B-cell epitopes in Chinese dog allergic children. Oncotarget. 2017;8: 90796–90807. doi: 10.18632/oncotarget.21822 29207604
13. Hilger C, Swiontek K, Arumugam K, Lehners C, Hentges F. Identification of a new major dog allergen highly cross-reactive with Fel d 4 in a population of cat- and dog-sensitized patients. J Allergy Clin Immunol. 2012;129: 2–6. doi: 10.1016/j.jaci.2011.10.017 22104604
14. Saarelainen S, Rytkönen-Nissinen M, Rouvinen J, Taivainen A, Auriola S, Kauppinen A, et al. Animal-derived lipocalin allergens exhibit immunoglobulin E cross-reactivity. Clin Exp Allergy. 2008;38: 374–381. doi: 10.1111/j.1365-2222.2007.02895.x 18070162
15. Lascombe MB, Grégoire C, Poncet P, Tavares GA, Rosinski-Chupin I, Rabillon J, et al. Crystal structure of the allergen Equ c 1. A dimeric lipocalin with restricted IgE-reactive epitopes. J Biol Chem. American Society for Biochemistry and Molecular Biology; 2000;275: 21572–7. doi: 10.1074/jbc.M002854200 10787420
16. Bingham RJ, Findlay JBC, Hsieh S-Y, Kalverda AP, Kjellberg A, Perazzolo C, et al. Thermodynamics of Binding of 2-Methoxy-3-isopropylpyrazine and 2-Methoxy-3-isobutylpyrazine to the Major Urinary Protein. American Chemical Society; 2004; doi: 10.1021/JA038461I
17. Yin L, Crawford F, Marrack P, Kappler JW, Dai S. T-cell receptor (TCR) interaction with peptides that mimic nickel offers insight into nickel contact allergy. Proc Natl Acad Sci. 2012;109: 18517–18522. doi: 10.1073/pnas.1215928109 23091041
18. Huynh K and Partch CL. Current Protocols in Protein Science: Analysis of protein stability and ligand interactions by thermal shift assay. Curr Protoc Protein Sci. 2016;79: 28.9.1–28.9.14. doi: 10.1002/0471140864.ps2809s79.Current
19. Kabsch W. Xds. Acta Crystallogr Sect D Biol Crystallogr. 2010;66: 125–132. doi: 10.1107/S0907444909047337 20124692
20. Evans PR, Murshudov GN. How good are my data and what is the resolution? Acta Crystallogr D Biol Crystallogr. International Union of Crystallography; 2013;69: 1204–14. doi: 10.1107/S0907444913000061 23793146
21. Adams PD, Afonine P V., Bunkóczi G, Chen VB, Davis IW, Echols N, et al. PHENIX: A comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr Sect D Biol Crystallogr. 2010;66: 213–221. doi: 10.1107/S0907444909052925 20124702
22. McCoy AJ, Grosse-Kunstleve RW, Adams PD, Winn MD, Storoni LC, Read RJ. Phaser crystallographic software. J Appl Crystallogr. International Union of Crystallography; 2007;40: 658–674. doi: 10.1107/S0021889807021206 19461840
23. Niemi MH, Rytkönen-Nissinen MA, Jänis J, Virtanen T, Rouvinen J. Structural aspects of dog allergies: The crystal structure of a dog dander allergen Can f 4. Mol Immunol. Elsevier Ltd; 2014;61: 7–15. doi: 10.1016/j.molimm.2014.04.003 24859823
24. Winn MD, Ballard CC, Cowtan KD, Dodson EJ, Emsley P, Evans PR, et al. Overview of the CCP4 suite and current developments. Acta Crystallogr Sect D Biol Crystallogr. International Union of Crystallography; 2011;67: 235–242. doi: 10.1107/S0907444910045749 21460441
25. Krissinel E. Stock-based detection of protein oligomeric states in jsPISA. Nucleic Acids Res. 2015;43: W314–W319. doi: 10.1093/nar/gkv314 25908787
26. Heinig M, Frishman D. STRIDE: A web server for secondary structure assignment from known atomic coordinates of proteins. Nucleic Acids Res. 2004;32: 500–502. doi: 10.1093/nar/gkh429 15215436
27. DeLano W. Pymol: An open-source molecular graphics tool. CCP4 Newsl Protein Crystallogr. 2002;700.
28. Tian W, Chen C, Lei X, Zhao J, Liang J. CASTp 3.0: computed atlas of surface topography of proteins. Nucleic Acids Res. 2018;46: W363–W367. doi: 10.1093/nar/gky473 29860391
29. http://xray.bmc.uu.se/usf/voidoo.html.
30. Kleywegt GJ, Jones TA. Detection, delineation, measurement and display of cavities in macromolecular structures. Acta Crystallogr Sect D Biol Crystallogr. 1994;50: 178–185. doi: 10.1107/S0907444993011333 15299456
31. http://www.cbs.dtu.dk/services/NetNGlyc/.
32. Steentoft C, Vakhrushev SY, Joshi HJ, Kong Y, Vester-Christensen MB, Schjoldager KT-BG, et al. Precision mapping of the human O-GalNAc glycoproteome through SimpleCell technology. EMBO J. 2013;32: 1478–1488. doi: 10.1038/emboj.2013.79 23584533
33. http://www.cbs.dtu.dk/services/NetPhos/.
34. https://web.expasy.org/sulfinator/.
35. Sievers F, Higgins DG. Clustal Omega, Accurate Alignment of Very Large Numbers of Sequences. Methods in molecular biology (Clifton, NJ). 2014. pp. 105–116. doi: 10.1007/978-1-62703-646-7_6
36. Yamamoto K, Ishibashi O, Sugiura K, Ubatani M, Sakaguchi M, Nakatsuji M, et al. Crystal structure of the dog allergen Can f 6 and structure-based implications of its cross-reactivity with the cat allergen Fel d 4. Sci Rep. 2019;9: 1503. doi: 10.1038/s41598-018-38134-w 30728436
37. Zanotti G, Marcello M, Malpeli G, Folli C, Sartori G, Berni R. Crystallographic studies on complexes between retinoids and plasma retinol-binding protein. J Biol Chem. 1994;269: 29613–20. Available: http://www.ncbi.nlm.nih.gov/pubmed/7961949 7961949
38. Dahlbäck B, Ahnström J, Christoffersen C, Bo L, Christoffersen C, Nielsen LB. Apolipoprotein M: structure and function. Futur Lipidol. 2008;3: 495–503.
39. Rouvinen J, Jänis J, Laukkanen M-L, Jylhä S, Niemi M, Päivinen T, et al. Transient dimers of allergens. PLoS One. Public Library of Science; 2010;5: e9037. doi: 10.1371/journal.pone.0009037 20140203
40. Schöll I, Kalkura N, Shedziankova Y, Bergmann A, Verdino P, Knittelfelder R, et al. Dimerization of the major birch pollen allergen Bet v 1 is important for its in vivo IgE-cross-linking potential in mice. J Immunol. 2005;175: 6645–50. Available: http://www.ncbi.nlm.nih.gov/pubmed/16272319 doi: 10.4049/jimmunol.175.10.6645 16272319
41. Madhurantakam C, Nilsson OB, Uchtenhagen H, Konradsen J, Saarne T, Högbom E, et al. Crystal Structure of the Dog Lipocalin Allergen Can f 2: Implications for Cross-reactivity to the Cat Allergen Fel d 4. J Mol Biol. Elsevier Ltd; 2010;401: 68–83. doi: 10.1016/j.jmb.2010.05.043 20621650
42. Wilkins MR, Gasteiger E, Bairoch A, Sanchez JC, Williams KL, Appel RD, et al. Protein identification and analysis tools in the ExPASy server. Methods Mol Biol. 1999;112: 531–52. Available: http://www.ncbi.nlm.nih.gov/pubmed/10027275 doi: 10.1385/1-59259-584-7:531 10027275
43. Zhao Z, Liu J, Wasinger VC, Malouf T, Nguyen-Khuong T, Walsh B, et al. Tear lipocalin is the predominant phosphoprotein in human tear fluid. Exp Eye Res. Elsevier Ltd; 2010;90: 344–349. doi: 10.1016/j.exer.2009.11.013 19951704
44. Loebel D, Scaloni A, Paolini S, Fini C, Ferrara L, Breer H, et al. Ligand-Binding of Boar Salivary Lipocalin. Biochem Soc. 2000;379: 369–379. doi: 10.1016/S0176-6724(86)80137-7
45. Dundas J, Ouyang Z, Tseng J, Binkowski A, Turpaz Y, Liang J. CASTp: computed atlas of surface topography of proteins with structural and topographical mapping of functionally annotated residues. Nucleic Acids Res. Oxford University Press; 2006;34: W116–8. doi: 10.1093/nar/gkl282 16844972
46. http://www.allergen.org/index.php [Internet].
Článek vyšel v časopise
PLOS One
2019 Číslo 9
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Je libo čepici místo mozkového implantátu?
- Pomůže v budoucnu s triáží na pohotovostech umělá inteligence?
- AI může chirurgům poskytnout cenná data i zpětnou vazbu v reálném čase
- Nová metoda odlišení nádorové tkáně může zpřesnit resekci glioblastomů
Nejčtenější v tomto čísle
- Graviola (Annona muricata) attenuates behavioural alterations and testicular oxidative stress induced by streptozotocin in diabetic rats
- CH(II), a cerebroprotein hydrolysate, exhibits potential neuro-protective effect on Alzheimer’s disease
- Comparison between Aptima Assays (Hologic) and the Allplex STI Essential Assay (Seegene) for the diagnosis of Sexually transmitted infections
- Assessment of glucose-6-phosphate dehydrogenase activity using CareStart G6PD rapid diagnostic test and associated genetic variants in Plasmodium vivax malaria endemic setting in Mauritania
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy