Early pre- and postsynaptic decrease in glutamatergic and cholinergic signaling after spinalization is not modified when stimulating proprioceptive input to the ankle extensor α-motoneurons: Anatomical and neurochemical study
Autoři:
Kamil Grycz aff001; Anna Głowacka aff001; Benjun Ji aff001; Julita Czarkowska-Bauch aff001; Olga Gajewska-Woźniak aff001; Małgorzata Skup aff001
Působiště autorů:
Nencki Institute of Experimental Biology, Warsaw, Poland
aff001
Vyšlo v časopise:
PLoS ONE 14(9)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0222849
Souhrn
Alpha-motoneurons (MNs) innervating ankle extensor muscles show reduced peripheral inputs from Ia proprioceptive afferents and cholinergic afferents after chronic spinalization (SCT). That phenomenon is not observed on ankle flexor MNs, indicating a smaller vulnerability of the latter MNs circuit to SCT. Locomotor training of spinal rats which partially restored those inputs to extensor MNs tended to hyper innervate flexor MNs, disclosing a need for selective approaches. In rats with intact spinal cord 7-days of low-threshold proprioceptive stimulation of the tibial nerve enriched glutamatergic Ia and cholinergic innervation of lateral gastrocnemius (LG) MNs, suggesting usefulness of selective stimulation for restoration of inputs to extensor MNs after SCT. Accordingly, to examine its effectiveness after SCT, tibial nerves and soleus muscles were implanted bilaterally, and for MN identification fluorescence tracers to LG and tibialis anterior (TA) muscles were injected two weeks prior to spinalization. Stimulation of tibial nerve, controlled by H-reflex recorded in the soleus muscle, started on the third post-SCT day and continued for 7 days. Nine days post-SCT the number and volume of glutamatergic Ia and of cholinergic C-boutons on LG MNs was decreased, but stimulation affected neither of them. Postsynaptically, a threefold decrease of NMDAR NR1 subunit and thirtyfold decrease of M2 muscarinic receptor transcripts caused by SCT were not counteracted by stimulation, whereas a threefold decrease of AMPAR GluR2 subunit tended to deepen after stimulation. We conclude that LG MNs, supported with proprioceptive stimuli after SCT, do not transcribe the perceived cues into compensatory response at the transcriptional level in the early post-SCT period.
Klíčová slova:
Ankles – Functional electrical stimulation – Nerve fibers – Cholinergics – Soleus muscles – Spinal nerves – Neuronal dendrites
Zdroje
1. Skup M, Gajewska-Wozniak O, Grygielewicz P, Mankovskaya T, Czarkowska-Bauch J. Different effects of spinalization and locomotor training of spinal animals on cholinergic innervation of the soleus and tibialis anterior motoneurons. Eur J Neurosci. 2012;36(5):2679–88. doi: 10.1111/j.1460-9568.2012.08182.x 22708650
2. Varoqui H, Schafer MK, Zhu H, Weihe E, Erickson JD. Identification of the differentiation-associated Na+/PI transporter as a novel vesicular glutamate transporter expressed in a distinct set of glutamatergic synapses. J Neurosci. 2002;22(1):142–55. 11756497
3. Oliveira ALR, Hydling F, Olsson E, Shi T, Edwards RH, Fujiyama F, et al. Cellular localization of three vesicular glutamate transporter mRNAs and proteins in rat spinal cord and dorsal root ganglia. Synapse. 2003;50(2):117–29. doi: 10.1002/syn.10249 12923814
4. Todd AJ, Hughes DI, Polgar E, Nagy GG, Mackie M, Ottersen OP, et al. The expression of vesicular glutamate transporters VGLUT1 and VGLUT2 in neurochemically defined axonal populations in the rat spinal cord with emphasis on the dorsal horn. Eur J Neurosci. 2003;17(1):13–27. doi: 10.1046/j.1460-9568.2003.02406.x 12534965
5. Alvarez FJ, Villalba RM, Zerda R, Schneider SP. Vesicular glutamate transporters in the spinal cord, with special reference to sensory primary afferent synapses. J Comp Neurol. 2004;472(3):257–80. doi: 10.1002/cne.20012 15065123
6. Liu TT, Bannatyne BA, Jankowska E, Maxwell DJ. Properties of axon terminals contacting intermediate zone excitatory and inhibitory premotor interneurons with monosynaptic input from group I and II muscle afferents. J Physiol. 2010;588(Pt 21):4217–33. doi: 10.1113/jphysiol.2010.192211 20837640
7. Rotterman TM, Nardelli P, Cope TC, Alvarez FJ. Normal distribution of VGLUT1 synapses on spinal motoneuron dendrites and their reorganization after nerve injury. J Neurosci. 2014;34(10):3475–92. doi: 10.1523/JNEUROSCI.4768-13.2014 24599449
8. Hellstrom J, Oliveira ALR, Meister B, Cullheim S. Large cholinergic nerve terminals on subsets of motoneurons and their relation to muscarinic receptor type 2. J Comp Neurol. 2003;460(4):476–86. doi: 10.1002/cne.10648 12717708
9. Gajewska-Wozniak O, Grycz K, Czarkowska-Bauch J, Skup M. Electrical stimulation of low-threshold proprioceptive fibers in the adult rat increases density of glutamatergic and cholinergic terminals on ankle extensor alpha-motoneurons. PLoS One. 2016;11(8):e0161614. doi: 10.1371/journal.pone.0161614 27552219
10. Gajewska-Wozniak O, Skup M, Kasicki S, Ziemlinska E, Czarkowska-Bauch J. Enhancing proprioceptive input to motoneurons differentially affects expression of neurotrophin 3 and brain-derived neurotrophic factor in rat Hoffmann-reflex circuitry. PLoS One. 2013;8(6):e65937. doi: 10.1371/journal.pone.0065937 23776573
11. Mendell LM, Johnson RD, Munson JB. Neurotrophin modulation of the monosynaptic reflex after peripheral nerve transection. J Neurosci. 1999;19(8):3162–70. 10191329
12. Davis-Lopez de Carrizosa MA, Morado-Diaz CJ, Tena JJ, Benitez-Temino B, Pecero ML, Morcuende SR, et al. Complementary actions of BDNF and neurotrophin-3 on the firing patterns and synaptic composition of motoneurons. J Neurosci. 2009;29(2):575–87. doi: 10.1523/JNEUROSCI.5312-08.2009 19144857
13. Schinder AF, Berninger B, Poo M. Postsynaptic target specificity of neurotrophin-induced presynaptic potentiation. Neuron. 2000;25(1):151–63. doi: 10.1016/s0896-6273(00)80879-x 10707980
14. Vicario-Abejon C, Owens D, McKay R, Segal M. Role of neurotrophins in central synapse formation and stabilization. Nat Rev Neurosci. 2002;3(12):965–74. doi: 10.1038/nrn988 12461553
15. Patel TD, Kramer I, Kucera J, Niederkofler V, Jessell TM, Arber S, et al. Peripheral NT3 signaling is required for ETS protein expression and central patterning of proprioceptive sensory afferents. Neuron. 2003;38(3):403–16. doi: 10.1016/s0896-6273(03)00261-7 12741988
16. Ryge J, Winther O, Wienecke J, Sandelin A, Westerdahl AC, Hultborn H, et al. Transcriptional regulation of gene expression clusters in motor neurons following spinal cord injury. BMC Genomics. 2010;11.
17. Wienecke J, Westerdahl AC, Hultborn H, Kiehn O, Ryge J. Global gene expression analysis of rodent motor neurons following spinal cord injury associates molecular mechanisms with development of postinjury spasticity. J Neurophysiol. 2010;103(2):761–78. doi: 10.1152/jn.00609.2009 19939961
18. Lee-Liu D, Moreno M, Almonacid LI, Tapia VS, Munoz R, von Marees J, et al. Genome-wide expression profile of the response to spinal cord injury in Xenopus laevis reveals extensive differences between regenerative and non-regenerative stages. Neural Dev. 2014;9.
19. Gransee HM, Porras MAG, Zhan WZ, Sieck GC, Mantilla CB. Motoneuron glutamatergic receptor expression following recovery from cervical spinal hemisection. J Comp Neurol. 2017;525(5):1192–205. doi: 10.1002/cne.24125 27650492
20. Paoletti P, Bellone C, Zhou Q. NMDA receptor subunit diversity: impact on receptor properties, synaptic plasticity and disease. Nat Rev Neurosci. 2013;14(6):383–400. doi: 10.1038/nrn3504 23686171
21. Traynelis SF, Wollmuth LP, McBain CJ, Menniti FS, Vance KM, Ogden KK, et al. Glutamate receptor ion channels: structure, regulation, and function. Pharmacol Rev. 2010;62(3):405–96. Erratum in: Pharmacol Rev. 2014;66(4):1141. doi: 10.1124/pr.109.002451 20716669
22. Huie JR, Stuck ED, Lee KH, Irvine KA, Beattie MS, Bresnahan JC, et al. AMPA receptor phosphorylation and synaptic colocalization on motor neurons drive maladaptive plasticity below complete spinal cord injury. eNeuro. 2015;2(5).
23. Martinez-Galvez G, Zambrano JM, Soto JCD, Zhan WZ, Gransee HM, Sieck GC, et al. TrkB gene therapy by adeno-associated virus enhances recovery after cervical spinal cord injury. Exp Neurol. 2016;276:31–40. doi: 10.1016/j.expneurol.2015.11.007 26607912
24. Loeb GE, Gans C. Electromyography for experimentalists. Chicago: University of Chicago Press; 1986. p. 394.
25. Bawa P, Chalmers G. Responses of human motoneurons to high-frequency stimulation of Ia afferents. Muscle Nerve. 2008;38(6):1604–15. doi: 10.1002/mus.21184 19016548
26. Schieppati M. The Hoffmann reflex: a means of assessing spinal reflex excitability and its descending control in man. Prog Neurobiol. 1987;28(4):345–76. 3588965
27. Brannstrom T. Quantitative synaptology of functionally different types of cat medial gastrocnemius alpha-motoneurons. J Comp Neurol. 1993;330(3):439–54. doi: 10.1002/cne.903300311 8468413
28. Conradi S, Kellerth JO, Berthold CH. Electron microscopic studies of serially sectioned cat spinal alpha-motoneurons. II. A method for the description of architecture and synaptology of the cell body and proximal dendritic segments. J Comp Neurol. 1979;184(4):741–54. doi: 10.1002/cne.901840407 422760
29. Novikov LN, Novikova LN, Holmberg P, Kellerth J. Exogenous brain-derived neurotrophic factor regulates the synaptic composition of axonally lesioned and normal adult rat motoneurons. Neuroscience. 2000;100(1):171–81. doi: 10.1016/s0306-4522(00)00256-6 10996467
30. Ichiyama RM, Broman J, Edgerton VR, Havton LA. Ultrastructural synaptic features differ between alpha- and gamma-motoneurons innervating the tibialis anterior muscle in the rat. J Comp Neurol. 2006;499(2):306–15. doi: 10.1002/cne.21110 16977622
31. Chopek JW, Sheppard PC, Gardiner K, Gardiner PF. Serotonin receptor and KCC2 gene expression in lumbar flexor and extensor motoneurons posttransection with and without passive cycling. J Neurophysiol. 2015;113(5):1369–76. doi: 10.1152/jn.00550.2014 25505109
32. Gazula VR, Roberts M, Luzzio C, Jawad AF, Kalb RG. Effects of limb exercise after spinal cord injury on motor neuron dendrite structure. J Comp Neurol. 2004;476(2):130–45. doi: 10.1002/cne.20204 15248194
33. D’Amico JM, Condliffe EG, Martins KJ, Bennett DJ, Gorassini MA. Recovery of neuronal and network excitability after spinal cord injury and implications for spasticity. Front Integr Neurosci. 2014;8:36. doi: 10.3389/fnint.2014.00036 24860447
34. Dupont-Versteegden EE, Houle JD, Dennis RA, Zhang J, Knox M, Wagoner G, et al. Exercise-induced gene expression in soleus muscle is dependent on time after spinal cord injury in rats. Muscle Nerve. 2004;29(1):73–81. doi: 10.1002/mus.10511 14694501
35. Quevedo J, Eguibar JR, Jimenez I, Schmidt RF, Rudomin P. Primary afferent depolarization of muscle afferents elicited by stimulation of joint afferents in cats with intact neuraxis and during reversible spinalization. J Neurophysiol. 1993;70(5):1899–910. doi: 10.1152/jn.1993.70.5.1899 8294962
36. Wieckowska A, Gajewska-Wozniak O, Glowacka A, Ji B, Grycz K, Czarkowska-Bauch J, Skup M. Spinalization and locomotor training differentially affect muscarinic acetylcholine receptor type 2 abutting on alpha-motoneurons innervating the ankle extensor and flexor muscles. J Neurochem. 2018;147, 361–379. doi: 10.1111/jnc.14567 30102779
37. Csaba Z, Krejci E, Bernard V. Postsynaptic muscarinic m2 receptors at cholinergic and glutamatergic synapses of mouse brainstem motoneurons. J Comp Neurol. 2013;521(9):2008–24. doi: 10.1002/cne.23268 23184757
38. Mejia-Gervacio S. Muscarinic control of AMPA receptor responsiveness in mouse spinal cord motoneurons. J Physiol. 2012;590(19):4663–71. doi: 10.1113/jphysiol.2012.238444 22890702
39. Li Y, Bennett DJ. Persistent sodium and calcium currents cause plateau potentials in motoneurons of chronic spinal rats. J Neurophysiol. 2003;90(2):857–69. doi: 10.1152/jn.00236.2003 12724367
40. Heckmann CJ, Gorassini MA, Bennett DJ. Persistent inward currents in motoneuron dendrites: implications for motor output. Muscle Nerve. 2005;31(2):135–56. doi: 10.1002/mus.20261 15736297
41. Czeh G, Gallego R, Kudo N, Kuno M. Evidence for maintenance of motoneuron properties by muscle-activity. J Physiol. 1978;281:239–52. doi: 10.1113/jphysiol.1978.sp012419 279668
42. Ferguson AR, Christensen RN, Gensel JC, Miller BA, Sun F, Beattie EC, et al. Cell death after spinal cord injury is exacerbated by rapid TNF alpha-induced trafficking of GluR2-lacking AMPARs to the plasma membrane. J Neurosci. 2008;28(44):11391–400. doi: 10.1523/JNEUROSCI.3708-08.2008 18971481
43. Hoy KC, Huie JR, Grau JW. AMPA receptor mediated behavioral plasticity in the isolated rat spinal cord. Behav Brain Res. 2013;236(1):319–26. doi: 10.1016/j.bbr.2012.09.007 22982187
Článek vyšel v časopise
PLOS One
2019 Číslo 9
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Je libo čepici místo mozkového implantátu?
- Pomůže v budoucnu s triáží na pohotovostech umělá inteligence?
- AI může chirurgům poskytnout cenná data i zpětnou vazbu v reálném čase
- Nová metoda odlišení nádorové tkáně může zpřesnit resekci glioblastomů
Nejčtenější v tomto čísle
- Graviola (Annona muricata) attenuates behavioural alterations and testicular oxidative stress induced by streptozotocin in diabetic rats
- CH(II), a cerebroprotein hydrolysate, exhibits potential neuro-protective effect on Alzheimer’s disease
- Comparison between Aptima Assays (Hologic) and the Allplex STI Essential Assay (Seegene) for the diagnosis of Sexually transmitted infections
- Assessment of glucose-6-phosphate dehydrogenase activity using CareStart G6PD rapid diagnostic test and associated genetic variants in Plasmodium vivax malaria endemic setting in Mauritania
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy