Lipopolysaccharide induces mouse translocator protein (18 kDa) expression via the AP-1 complex in the microglial cell line, BV-2
Autoři:
Shuji Shimoyama aff001; Tomonori Furukawa aff002; Yoshiki Ogata aff002; Yoshikazu Nikaido aff002; Kohei Koga aff002; Yui Sakamoto aff003; Shinya Ueno aff001; Kazuhiko Nakamura aff001
Působiště autorů:
Research Center for Child Mental Development, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
aff001; Department of Neurophysiology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
aff002; Department of Neuropsychiatry, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
aff003
Vyšlo v časopise:
PLoS ONE 14(9)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0222861
Souhrn
It has been reported that neuroinflammation occurs in the central nervous system (CNS) in patients with neuropathic pain, Alzheimer’s disease and autism spectrum disorder. The 18-kDa translocator protein TSPO is used as an imaging target in positron emission tomography to detect neuroinflammation, and its expression is correlated with microglial activation. However, the mechanism underlying the transcriptional regulation of Tspo induced by inflammation is not clear. Here, we revealed that lipopolysaccharide (LPS) -induced Tspo expression was activated by the AP-1 complex in a mouse microglial cell line, BV-2. Knockdown of c-Fos and c-Jun, the components of AP-1, reduced LPS-induced Tspo expression. Furthermore, the enrichment of Sp1 in the proximal promoter region of Tspo was increased in the presence of LPS. In addition, the binding of histone deacetylase 1 (HDAC1) to the enhancer region, which contains the AP-1 site, was decreased by LPS treatment, but there were no significant differences in HDAC1 binding to the proximal promoter region with or without LPS. These results indicated that HDAC1 is involved not in the proximal promoter region but in the enhancer region. Our study revealed that inflammatory signals induce the recruitment of AP-1 to the enhancer region and Sp1 to the proximal promoter region of the Tspo gene and that Sp1 may regulate the basal expression of Tspo.
Klíčová slova:
Biology and life sciences – Cell biology – Cellular types – Animal cells – Glial cells – Microglial cells – Cellular structures and organelles – Biochemistry – Bioenergetics – Energy-producing organelles – Mitochondria – Nucleic acids – RNA – Non-coding RNA – Promoter regions – Proteins – DNA-binding proteins – Transcription factors – Regulatory proteins – Genetics – Gene expression – Gene regulation – Transcriptional control – Small interfering RNAs – DNA
Zdroje
1. Wake H, Moorhouse AJ, Jinno S, Kohsaka S, Nabekura J. Resting microglia directly monitor the functional state of synapses in vivo and determine the fate of ischemic terminals. J Neurosci. 2009;29: 3974–3980. doi: 10.1523/JNEUROSCI.4363-08.2009 19339593
2. Giulian D, Baker T J, Shih L C, Lachman L B. Interleukin 1 of the central nervous system is produced by ameboid microglia. JExpMed. 1986;164: 594–604. doi: 10.1084/jem.164.2.594 3487617
3. Sawada M, Kondo N, Suzumura A, Marunouchi T. Production of tumor necrosis factor-alpha by microglia and astrocytes in culture. Brain Res. 1989;491: 394–397. doi: 10.1016/0006-8993(89)90078-4 2765895
4. Batchelor PE, Liberatore GT, Wong JYF, Porritt MJ, Frerichs F, Donnan GA, et al. Activated Macrophages and Microglia Induce Dopaminergic Sprouting in the Injured Striatum and Express Brain-Derived Neurotrophic Factor and Glial Cell Line-Derived Neurotrophic Factor. J Neurosci. 1999;19: 1708–1716. 10024357
5. Donnell SLO, Frederick TJ, Krady JK, Vannucci SJ, Wood TL. IGF-I and Microglia / Macrophage Ischemic Mouse Brain. Glia. 2002;38: 85–97. doi: 10.1002/glia.10081 12112378
6. Arcuri C, Mecca C, Bianchi R, Giambanco I, Donato R. The Pathophysiological Role of Microglia in Dynamic Surveillance, Phagocytosis and Structural Remodeling of the Developing CNS. Front Mol Neurosci. 2017;10: 1–22. doi: 10.3389/fnmol.2017.00001
7. Imamoto N, Momosaki S, Fujita M, Omachi S, Yamato H, Kimura M, et al. [11C]PK11195 PET imaging of spinal glial activation after nerve injury in rats. Neuroimage. Elsevier Inc.; 2013;79: 121–128. doi: 10.1016/j.neuroimage.2013.04.039 23611861
8. Groom GN, Junck L, Foster NL, Frey KA, Kuhl DE. PET of peripheral benzodiazepine binding sites in the microgliosis of Alzheimer’s disease. J Nucl Med. 1995;36: 2207–2210. 8523106
9. Suzuki K, Sugihara G, Ouchi Y, Nakamura K, Futatsubashi M, Takebayashi K, et al. Microglial Activation in Young Adults With Autism Spectrum Disorder. JAMA Psychiatry. 2013;70: 49–58. doi: 10.1001/jamapsychiatry.2013.272 23404112
10. Charbonneau P, Syrota A, Crouzel C, Valois JM, Prenant C, Crouzel M. Peripheral-type benzodiazepine receptors in the living heart characterized by positron emission tomography. Circulation. 1986;73: 476–483. doi: 10.1161/01.cir.73.3.476 3004781
11. Sandiego CM, Gallezot J-D, Pittman B, Nabulsi N, Lim K, Lin S-F, et al. Imaging robust microglial activation after lipopolysaccharide administration in humans with PET. Proc Natl Acad Sci U S A. 2015;112: 12468–73. doi: 10.1073/pnas.1511003112 26385967
12. Papadopoulos V, Guilarte R, Knudsen TB, Baraldi M, Lindemann P, Norenberg MD, et al. Translocator protein (18 kDa): new nomenclature for the peripheral-type benzodiazepine receptor based on its structure and molecular function. Trends Pharmacol Sci. 2006;27: 402–409. doi: 10.1016/j.tips.2006.06.005 16822554
13. Krueger KE, Papadopoulos V. Peripheral-type benzodiazepine receptors mediate translocation of cholesterol from outer to inner mitochondrial membranes in adrenocortical cells. J Biol Chem. 1990;265: 15015–15022. Available: http://www.jbc.org/content/265/25/15015 2168398
14. Lacapère J, Papadopoulos V. Peripheral-type benzodiazepine receptor: structure and function of a cholesterol-binding protein in steroid and bile acid biosynthesis. Steroids. 2003;68: 569–585. doi: 10.1016/s0039-128x(03)00101-6 12957662
15. Alexander BEE, Roller E, Kloiz U. Characterization of peripheral-type benzodiazepine binding sites on human lymphocytes and lymphoma cell lines and their role in cell growth. Biochem Pharmacol. 1992;44: 269–74. Available: http://www.sciencedirect.com/science/article/pii/0006295292900098 doi: 10.1016/0006-2952(92)90009-8 1322664
16. Banati RB, Middleton RJ, Chan R, Hatty CR, Kam WW-Y, Quin C, et al. Positron emission tomography and functional characterization of a complete PBR/TSPO knockout. Nat Commun. Nature Publishing Group; 2014;19: 5452–5463. doi: 10.1038/ncomms6452 25406832
17. Cohen M, Matcovitch O, David E, Barnett-Itzhaki Z, Keren-Shaul H, Blecher-Gonen R, et al. Chronic exposure to TGFβ1 regulates myeloid cell inflammatory response in an IRF7-dependent manner. EMBO J. 2014;33: 2906–21. doi: 10.15252/embj.201489293 25385836
18. Höing S, Rudhard Y, Reinhardt P, Glatza M, Stehling M, Wu G, et al. Discovery of inhibitors of microglial neurotoxicity acting through multiple mechanisms using a stem-cell-based phenotypic assay. Cell Stem Cell. 2012;11: 620–632. doi: 10.1016/j.stem.2012.07.005 23064101
19. Furukawa T, Shimoyama S, Miki Y, Nikaido Y, Koga K, Nakamura K, et al. Chronic diazepam administration increases the expression of Lcn2 in the CNS. Pharmacol Res Perspect. 2017;5: e00283. doi: 10.1002/prp2.283 28596835
20. Lee J-K, Tansey MG. Microglia isolation from adult mouse brain. Joseph B, Venero JL, editors. Methods Mol Biol. Totowa, NJ: Humana Press; 2013;1041: 17–23. doi: 10.1007/978-1-62703-520-0_3 23813365
21. Shimoyama S, Kasai S, Kahn-Perlès B, Kikuchi H. Dephosphorylation of Sp1 at Ser-59 by protein phosphatase 2A (PP2A) is required for induction of CYP1A1 transcription after treatment with 2,3,7,8-tetrachlorodibenzo-p-dioxin or omeprazole. Biochim Biophys Acta. Elsevier B.V.; 2014;1839: 107–15. doi: 10.1016/j.bbagrm.2013.12.004 24382322
22. Bae KR, Shim HJ, Balu D, Kim SR, Yu SW. Translocator protein 18 kDa negatively regulates inflammation in microglia. J Neuroimmune Pharmacol. 2014;9: 424–437. doi: 10.1007/s11481-014-9540-6 24687172
23. Anholt RR, Pedersen PL, De Souza EB, Snyder SH. The peripheral-type benzodiazepine receptor. Localization to the mitochondrial outer membrane. J Biol Chem. 1986;261: 576–83. Available: http://www.ncbi.nlm.nih.gov/pubmed/3001071 3001071
24. Batarseh A, Giatzakis C, Papadopoulos V. Phorbol-12-myristate 13-acetate acting through protein kinase Cε induces translocator protein (18-kDa) Tspo gene expression. Biochemistry. 2008;47: 12886–12899. doi: 10.1021/bi8012643 18975922
25. Batarseh A, Li J, Papadopoulos V. Protein kinase Cε regulation of translocator protein (18 kDa) Tspo gene expression is mediated through a MAPK pathway targeting STAT3 and c-Jun transcription factors. Biochemistry. 2010;49: 4766–78. doi: 10.1021/bi100020e 20469933
26. Batarseh A, Barlow KD, Martinez-arguelles DB, Papadopoulos V. Functional characterization of the human translocator protein (18 kDa) gene promoter in human breast cancer cell lines. BBA—Gene Regul Mech. Elsevier B.V.; 2012;1819: 38–56. doi: 10.1016/j.bbagrm.2011.09.001 21958735
27. Doetzlhofer A, Rotheneder H, Lagger G, Koranda M, Kurtev V, Brosch G, et al. Histone Deacetylase 1 Can Repress Transcription by Binding to Sp1. Mol Cell Biol. 1999;19: 5504–5511. doi: 10.1128/mcb.19.8.5504 10409740
28. Poltorak A, He X, Smirnova I, Liu M, Huffel C Van, Du X, et al. Defective LPS Signaling in C3H / HeJ and C57BL / 10ScCr Mice: Mutations in Tlr4 Gene. Science. 1998;282: 2085–2088. doi: 10.1126/science.282.5396.2085 9851930
29. Geppert TD, Whitehurst CE, Thompson P, Beutler B, Arthritis CS. Lipopolysaccharide Signals Activation of Tumor Necrosis Factor Biosynthesis Through the Ras / Raf-1 / MEK / MAPK Pathway. Mol Med. 1994;1: 93–103. 8790605
30. Cario E, Rosenberg IM, Brandwein SL, Beck PL, Reinecker H-C, Podolsky DK. Lipopolysaccharide Activates Distinct Signaling Pathways in Intestinal Epithelial Cell Lines Expressing Toll-Like Receptors. J Immunol. 2000;164: 966–972. doi: 10.4049/jimmunol.164.2.966 10623846
31. Jin J, Sundararaj KP, Samuvel DJ, Zhang X, Li Y, Lu Z, et al. Different signaling mechanisms regulating IL-6 expression by LPS between gingival fibroblasts and mononuclear cells: Seeking the common target. Clin Immunol. Elsevier B.V.; 2012;143: 188–199. doi: 10.1016/j.clim.2012.01.019 22386866
32. Minden A, Lin A, Smeal T, Dérijard B, Cobb M, Davis R, et al. c-Jun N-terminal phosphorylation correlates with activation of the JNK subgroup but not the ERK subgroup of mitogen-activated protein kinases. Mol Cell Biol. 1994;14: 6683–8. doi: 10.1128/mcb.14.10.6683 7935387
33. Derijard B, Raingeaud J, Barrett T, Wu I, Han J, Ulevitch R, et al. Independent human MAP-kinase signal transduction pathways defined by MEK and MKK isoforms. Science. 1995;267: 682–685. doi: 10.1126/science.7839144 7839144
34. Rashid K, Geissl L, Wolf A, Karlstetter M, Langmann T. Transcriptional regulation of Translocator protein (18 kDa) (TSPO) in microglia requires Pu.1, Ap1 and Sp factors. Biochim Biophys Acta—Gene Regul Mech. Elsevier; 2018;1861: 1119–1133. doi: 10.1016/j.bbagrm.2018.10.018 30412797
35. Weber A, Wasiliew P, Kracht M. Interleukin-1 (IL-1) pathway. Sci Signal. 2010;3. doi: 10.1126/scisignal.3105cm1 20086235
36. Lomberk G, Urrutia R. The family feud: turning off Sp1 by Sp1-like KLF proteins. Biochem J. 2005;392: 1–11. doi: 10.1042/BJ20051234 16266294
37. Owen GI, Richer JK, Tung L, Takimoto G, Horwitz KB. Progesterone Regulates Transcription of the p21 WAF1 Cyclin- dependent Kinase Inhibitor Gene through Sp1 and CBP / p300 *. J Biol Chem. 1998;273: 10696–10701. doi: 10.1074/jbc.273.17.10696 9553133
38. Choi HS, Lee JH, Park JG, Lee YI. Trichostatin A, a histone deacetylase inhibitor, activates the IGFBP-3 promoter by upregulating Sp1 activity in hepatoma cells: alteration of the Sp1/Sp3/HDAC1 multiprotein complex. Biochem Biophys Res Commun. 2002;296: 1005–1012. doi: 10.1016/s0006-291x(02)02001-6 12200149
39. Kang HJ, Kawasawa Y, Cheng F, Zhu Y, Xu X, Li M, et al. Spatio-temporal transcriptome of the human brain. Nature. 2011;478: 483–489. doi: 10.1038/nature10523 22031440
40. Hanisch U-K, Kettenmann H. Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci. 2007;10: 1387–94. doi: 10.1038/nn1997 17965659
41. Chen MK, Guilarte TR. Translocator protein 18 kDa (TSPO): Molecular sensor of brain injury and repair. Pharmacol Ther. 2008;118: 1–17. doi: 10.1016/j.pharmthera.2007.12.004 18374421
42. Wang W, Zhang L, Zhang X, Xue R, Li L, Zhao W, et al. Lentiviral-Mediated Overexpression of the 18 kDa Translocator Protein (TSPO) in the Hippocampal Dentate Gyrus Ameliorates LPS-Induced Cognitive Impairment in Mice. Front Pharmacol. 2016;7: 384. doi: 10.3389/fphar.2016.00384 27803668
Článek vyšel v časopise
PLOS One
2019 Číslo 9
- Tisícileté topoly, mokří psi, stárnoucí kočky a ospalé octomilky – „jednohubky“ z výzkumu 2024/41
- Jaké jsou aktuální trendy v léčbě karcinomu slinivky?
- Může hubnutí souviset s vyšším rizikem nádorových onemocnění?
- Menstruační krev má značný diagnostický potenciál, mimo jiné u diabetu
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
Nejčtenější v tomto čísle
- Graviola (Annona muricata) attenuates behavioural alterations and testicular oxidative stress induced by streptozotocin in diabetic rats
- CH(II), a cerebroprotein hydrolysate, exhibits potential neuro-protective effect on Alzheimer’s disease
- Comparison between Aptima Assays (Hologic) and the Allplex STI Essential Assay (Seegene) for the diagnosis of Sexually transmitted infections
- Assessment of glucose-6-phosphate dehydrogenase activity using CareStart G6PD rapid diagnostic test and associated genetic variants in Plasmodium vivax malaria endemic setting in Mauritania
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy