#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Morphological, microbiological and ultrastructural aspects of sepsis by Aeromonas hydrophila in Piaractus mesopotamicus


Autoři: Fausto A. Marinho-Neto aff001;  Gustavo S. Claudiano aff001;  Jefferson Yunis-Aguinaga aff003;  Victor A. Cueva-Quiroz aff003;  Karina K. Kobashigawa aff004;  Nathan R. N. Cruz aff001;  Flávio R. Moraes aff001;  Julieta R. E. Moraes aff001
Působiště autorů: Departament of Veterinary Pathology, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, São Paulo, Brazil aff001;  Institute of Biodiversity and Forests, Federal University of Western Pará (UFOPA), Santarém, Pará, Brazil aff002;  Aquaculture Center of UNESP, Jaboticabal, São Paulo, Brazil aff003;  Departament of Veterinary Surgery and Clinic, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, São Paulo, Brazil aff004
Vyšlo v časopise: PLoS ONE 14(9)
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pone.0222626

Souhrn

Aeromonas bacteria can cause an infection characterized by septicemia and is one of the most common pathogens in tropical fish. This disease is responsible for high morbidity and mortality rates, causing considerable losses in aquaculture. Thus, the understanding of its pathophysiology is crucial to develop control strategies of this bacterial infection in farmed fish. This study aimed to characterize early pathological aspects of acute sepsis in pacu (Piaractus mesopotamicus) experimentally infected with Aeromonas hydrophila. A total of 160 juvenile pacus were inoculated intraperitoneally with A. hydrophila (1.78 x 109 CFU/mL) and at 0 (control), 1, 3, 6, and 9 hours post-inoculation (hpi), animals were anesthetized and samples were collected for microbiological, light microscopy and transmission electron microscopy (TEM) analyzes. The results showed the occurrence of hemodynamic alterations, such as hemorrhage and congestion, which were observed mainly after 6 and 9 hpi. It was possible to re-isolate Aeromonas at all sampling times except in control group. However, just after 9 hpi it was possible to find the bacteria in all fish and tissues. Light microscopy analyses revealed a degenerative process, necrosis and vascular damage mainly at 6 and 9 hpi. According to the ultrastructural examination, areas of cellular death were identified in all examined tissues, especially at 6 and 9 hpi. However, the most severe, related to necrosis, were observed after 6 and 9 hpi. The findings suggested that this bacterium spreads in the first hpi through the fish organs, mainly affecting spleen, liver and kidney, causing irreversible lesions at the molecular level.

Klíčová slova:

Biology and life sciences – Organisms – Bacteria – Aeromonas – Aeromonas hydrophila – Microbiology – Medical microbiology – Microbial pathogens – Bacterial pathogens – Anatomy – Renal system – Kidneys – Body fluids – Blood – Physiology – Spleen – Cell biology – Cellular structures and organelles – Endoplasmic reticulum – Cell processes – Secretory pathway – Medicine and health sciences – Pathology and laboratory medicine – Pathogens – Hemorrhage – Necrosis – Diagnostic medicine – Signs and symptoms – Lesions – Vascular medicine – Immune physiology


Zdroje

1. FAO (Food and Agriculture Organization of the United Nations). The State of World Fisheries and Aquaculture 2016. Contributing to food security and nutrition for all. Rome. 2016;200p.

2. IBGE (Instituto Brasileiro de Geografia e Estatística). Produção Pecuária Municipal. 2015;43:1–49.

3. Moraes FR, Martins ML. Condições pré-disponentes e principais enfermidades de teleósteos em piscicultura intensiva. In: Cyrino JEP, Urbinati EC, Fracalossi D M, Castangnolli N, editors. Tópicos especiais em piscicultura de água doce tropical intensiva. São Paulo: TecArt; 2004. p. 343–86.

4. Holliman A. The veterinary approach to trout. In: Brown L, editor. Aquaculture for veterinarians: fish husbandry and medicine. Oxford: Pergamon Press; 1993. p. 223–47.

5. Cyrino JEP, Urbinati EC, Fracalossi DM, Castagnolli N. Tópicos Especiais em Piscicultura de Água Doce Tropical Intensiva. São Paulo: TecArte; 2004. p. 533.

6. Deodhar LP, Saraswathi K, Varudkar A. Aeromonas spp. and their association with human diarrheal disease. J Clin Microbiol. 1991;29:853–6. 2056050

7. Borchardt MA, Stemper ME, Standridge JH. Aeromonas Isolates from Human Diarrheic Stool and Groundwater Compared by Pulsed-Field Gel Electrophoresis. Emerg Infect Dis. 2003;9:224–8. doi: 10.3201/eid0902.020031 12603994

8. Boijink CL, Brandão DA. Alterações histológicas e comportamentais provocadas pela inoculação de suspensão bacteriana (Aeromonas hydrophila) em juvenis de jundiá (Rhamdiaquelen). Ciênc Rural. 2001;31:687–94.

9. Aoki T. Motile Aeromonads (Aeromonas hydrphila). In: Woo PTK, Bruno DW, editors. Fish Diseases and Disorders. Viral, Bacterial and Fungal Infections. Wallingford, U.K: CABI Publishing; 2011; p. 427–53.

10. Rau S, Kohn B, Richter C, Fenske N, Küchenhoff H, Hartmann K, et al. Plasma interleukin-6 response is predictive for severity and mortality in canine systemic inflammatory response 86 syndrome and sepsis. Vet Clin Pathol. 2007;36:253–60. 17806073

11. Claudiano GS, Yunis-Aguinaga J, Marinho-Neto FA, Miranda RL, Martins IM, Otani FS, et al. Hematological and imune changes in Piaractus mesopotamicus in the sepsis induced by Aeromonas hydrophila. Fish Shellfish Immunol. 2019;88:259–265. doi: 10.1016/j.fsi.2019.01.044 30716521

12. Salles MJC, Sprovieri SRS, Bedrikow R, Pereira AC, Cardenuto SL, Azevedo PRC, et al. Síndrome da resposta inflamatória sistêmica/sepse–revisão e estudo da terminologia e fisiopatologia. Rev Ass Med Bras. 1999;45:86–92.

13. McDaniel D. Procedures for the detection and identification of certain fish pathogens. Washington: American Fisheries Society, Revised edition; 1979. 118 p.

14. Boyd CE. Water quality for ponds aquaculture. Auburn: International Center for Aquaculture and Environment Alabama Agricultural Experiment Station Auburn University; 1990. 482 p.

15. Sipaúba‑Tavares LE, Moreno SQ. Variação dos parâmetros limnológicos em um viveiro de piscicultura nos períodos de seca e chuva. Rev Unimar. 1994;16: 229‑42.

16. Sarkar A, Saha M, Roy P. Identification and typing of Aeromonas hydrophila throght 16S rDNA-PCR fingerprinting. J Aquac Res Dev. 2012;3: 2–4.

17. Rantin FT, Guerra CDR, Kalinin AL, Glass ML. The influence of aquatic surface respiration (ASR) on cardio-respiratory function of the serrasalmid fish Piaractus mesopotamicus. Comp Biochem Phys. 1998;119:991–7.

18. Suhet MI. Streptococcus spp. e Aeromonas spp. na água e em tilápias do nilo (Oreochromis niloticus) e parâmetros físico-químicos da água de piscicultura em tanques-rede [PhD thesis]. Jaboticabal (SP): Universidade Estadual Paulista “Júlio Mesquita Filho”; 2011.

19. Bancroft JD, Gamble M. Theory and Practice of Histological Techniques. 8th ed. Edinburgh: Churchill Livingstone; 2018.

20. Valienti E, Padro’s F, Lamas J, Llorens A, Amaro C. Microbial and histopathological study of the vibriosis caused by Vibrio vulnificusserovar E in eels: The metalloprotease Vvp is not an essential lesional factor. Microb Pathogenesis. 2008;45:386–93.

21. Chopra AK, Xu XJ, Ribardo D, Gonzalez M, Kuhl K, Peterson JW, et al. The cytotoxic enterotoxin of Aeromonas hydrophila induces proinflammatory cytokine production and activates arachidonic acid metabolism in macrophages. Infect Immun. 2000;68:2808–18. doi: 10.1128/iai.68.5.2808-2818.2000 10768977

22. Scoaris DO, Colacite J, Nakamura CV, Ueda-Nakamura T, Abreu Filho BA, Dias Filho BP. Virulence and antibiotic susceptibility of Aeromonas spp. isolated from drinking water. Anton Leeuw. 2008;93:111–22.

23. Wong CYF, Heuzenroeder MW, Flower RLP. Inactivation of two haemolytic toxin genes in Aeromonas hydrophila attenuates virulence in a suckling mouse model. Microbiol. 1998;144:291–8.

24. Carriero MM, Mendes MAA, Moro SRL, Henrique-Silva F. Characterization of a new strain of Aeromonas dhakensis isolated from diseased pacu fish (Piaractus mesopotamicus) in Brazil. J Fish Dis. 2016;39:01–11.

25. Farto R, Milton DL, Bermúdez MB, Nieto TP. Colonization of turbot tissues by virulent and avirulent Aeromonas salmonicidasubsp. salmonicidastrains during infection. Dis Aquat Organ. 2011;95:167–73. doi: 10.3354/dao02342 21848125

26. Lin B, Chen S, Cao Z, Lin Y, Mo D, Zhang H, et al. Acute phase response in zebrafish upon Aeromonas salmonicida and Staphylococcus aureus infection: Striking similarities and obvious differences with mammals. Mol Immunol. 2007;44:295–301. doi: 10.1016/j.molimm.2006.03.001 16630661

27. Das A, Sahoo PK, Mohanty BR, Jena JK. Pathophysiology of experimental Aeromonas hydrophila infection in Puntius sarana: Early changes in blood and aspects of the innate immune-related gene expression in survivors. Vet Immunol Immunopathol. 2011;142:207–18. doi: 10.1016/j.vetimm.2011.05.017 21640390

28. Fichi G, Cardeti G, Cocumlli C, Vendramin N, Toffan A, Eleni C, et al. Detection of Cyprinid herpesvirus 2 in association with Aeromonas sobria infection of Carassiuscarassius (L.), in Italy. J Fish Dis. 2013;36:823–30. doi: 10.1111/jfd.12048 23488630

29. Roberts RJ. Fish Pathology. 4th ed. London: W. B. Saunders. 2012, 590p.

30. Garcia-Leme J. Hormones and Inflammation. Boca Raton: CRC Press. 1989; 248p.

31. Kumar V, Abbas AK, Fausto N. Robbins & Cotran Patologia: Bases Patológicas das Doenças. 9th ed. Rio de Janeiro: Elsevier (2005), 1408p.

32. Matsuyama T, Iida T. Influence of tilapia mast cell lysate on vascular permeability. Fish Shellfish Immunol. 2001;11:549–56. doi: 10.1006/fsim.2000.0332 11592583

33. Lowry R, Balboa S, Parker JL, Shaw JG. Aeromonas Flagella and Colonisation Mechanisms. Adv Microb Physiol. 2014;65:203–56. doi: 10.1016/bs.ampbs.2014.08.007 25476767

34. Faílde LD, Losada AP, Bermúdez R, Santos Y, Quiroga MI. Tenacibaculummaritimum infection: Pathology and immunohistochemistry in experimentally challenged turbot (Psetta maxima L.). Microb Pathogenesis. 2013;65:82–8.

35. Abdullah S, Omar N, Yosoff SM, Obukwho EB, Nwunuji TP, Hanan L, et al. Clinicopathological features and immunohistochemical detection of antigens in acute experimental Streptococcus agalactiae infection in red tilapia (Oreochromis spp.). Springerplus. 2013;2:01–07.

36. Vilches S, Urgell C, Merino SM, Chacon R, Soler L, Castro-Escarpulli G, et al. Complete type III secretion system of a mesophilic Aeromonas hydrophila strain. Appl Environ Microbiol. 2004;70:6914–19. doi: 10.1128/AEM.70.11.6914-6919.2004 15528564

37. Albert MJ, Ansaruzzaman M, Talukder KA, Chopra AK, Kuhn I, Faruque ASG, et al. Prevalence of enterotoxin genes in Aeromonas sp. isolated from children with diarrhea, healthy controls, and the environment. ‎J Clin Microbiol. 2000;38:3785–90. 11015403

38. Sen K, Rodgers M. Distribuition of six virulence factors in Aeromonas species isolated from US drinking water utilities: a PCR identification. J Appl Microbiol. 2004;97:1077–86. doi: 10.1111/j.1365-2672.2004.02398.x 15479425

39. Sinha S, Shimada T, Ramamurthy T, Battacarya SK, Yamasaky S, Takeda Y, et al. Prevalence, serotype distributin, antibiotic susceptibility and genetic profiles of mesophilic Aeromonas species isolated from hospitalized diarrhoeal cases in Kolkata, India. J Med Microbiol. 2004;53:527–34. doi: 10.1099/jmm.0.05269-0 15150333

40. Beaz-Hidalgo R, Figueras MJ. Aeromonas spp. whole genomes and virulence factors implicated in fish disease. J Fish Dis. 2013;36:371–88. doi: 10.1111/jfd.12025 23305319

41. Chopra AK, Houston CW. Enterotoxins in Aeromonas-associated gastroenteritis. Microbes Infect. 1999;1:1129–37. 10572317

42. Shotts EB, Tsu TC, Waltman WD. Extracellular proteolytic activity of Aeromonas hydrophila complex. Fish Pathol. 1985;20:37–40.

43. Aguado-Urda M, Rodríguez-Bertos A, Heras AI, Blanco MM, Acosta F, Cid R, et al. Experimental Lactococcus garvieae infection in zebrafish and first evidence of its ability to invade non-phagocytic cells. Vet Microbiol. 2014;171:248–54. doi: 10.1016/j.vetmic.2014.03.029 24768002

44. Chong RSM, Shinwari MW, Amigh MJ, Avarena-Roman M, Riley TV First report of Erysipelothrix rhusiopathiae-associated septicaemia and histologic changes in cultured Australian eels, Anguilla reinhardtii (Steindachner, 1867) and A. australis (Richardson, 1841). J Fish Dis. 2015;38:839–47. doi: 10.1111/jfd.12293 25080974

45. Carraschi SP, Cruz C, Machado-Neto JG, Ignácio NF, Barbuio R, Machado MRF. Histopathological biomarkers in pacu (Piaractus mesopotamicus) infected with Aeromonas hydrophila and treated with antibiotics. Ecotoxicol Environ Saf. 2012;83:115–20. doi: 10.1016/j.ecoenv.2012.06.016 22766414

46. Avci H, Birincioglu SS, Tanrikul TT, Epikmen ET, Metin N, Avsever ML. Experimental Lactococcus garvieae infection in rainbow trout, Oncorhynchus mykiss, Walbaum 1792: a comparative histopathological and immunohistochemical study. J Fish Dis. 2014;37:481–95. doi: 10.1111/jfd.12132 23957738

47. Gudmundsdottir BK, Gudmundsdottir S, Gudmundsdottir S, Magnadottir B. Yersiniosis in Atlantic cod, Gadusmorhua (L.), characterization of the infective strain and host reactions. J Fish Dis. 2014;37:511–19. doi: 10.1111/jfd.12139 23786306

48. Suanyuk N, Rogge M, Thune R, Watthanaohiromsakul M, Champhat N, Wiangkum W. Mortality and pathology of hybrid catfish, Clarias macrocephalus (Günther) x Clarias gariepinus (Burchell), associated with Edwardsiella ictaluri infection in Southern Thailand. J Fish Dis. 2014;37:385–95. doi: 10.1111/jfd.12127 23763374

49. Agius C, Roberts RJ. Melano-macrophage centres and their role in fish pathology. J Fish Dis. 2003;26:499–509. doi: 10.1046/j.1365-2761.2003.00485.x 14575368

50. Aamri FE, Caballero MJ, Real F, Acosta F, Déniz R, Román L, et al. Streptococcus iniae in Gilthead Seabream (Sparusaurata, L.) and Red Porgy (Pagruspagrus, L.): Ultrastructural Analysis. Vet Pathol. 2015;52:209–212. doi: 10.1177/0300985814520638 24496225

51. Monaghan SJ, Thompson KD, Adams A, Kempter J, Bergmann SM. Examination of the early infection stages of koi herpesvirus (KHV) in experimentally infected carp, Cyprinus carpio L. using in situ hybridization. J Fish Dis. 2015;38:477–89. doi: 10.1111/jfd.12260 24925228


Článek vyšel v časopise

PLOS One


2019 Číslo 9
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

plice
INSIGHTS from European Respiratory Congress
nový kurz

Současné pohledy na riziko v parodontologii
Autoři: MUDr. Ladislav Korábek, CSc., MBA

Svět praktické medicíny 3/2024 (znalostní test z časopisu)

Kardiologické projevy hypereozinofilií
Autoři: prof. MUDr. Petr Němec, Ph.D.

Střevní příprava před kolonoskopií
Autoři: MUDr. Klára Kmochová, Ph.D.

Všechny kurzy
Kurzy Podcasty Doporučená témata Časopisy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#