Structural mechanism for regulation of DNA binding of BpsR, a Bordetella regulator of biofilm formation, by 6-hydroxynicotinic acid
Autoři:
William T. Booth aff001; Ryan R. Davis aff001; Rajendar Deora aff002; Thomas Hollis aff001
Působiště autorů:
Department of Biochemistry, Center for Structural Biology, Wake Forest School of Medicine, Winston-Salem, NC, United States of America
aff001; Department of Microbial Infection and Immunity, and Department of Microbiology, The Ohio State University, Columbus, Ohio, United States of America
aff002
Vyšlo v časopise:
PLoS ONE 14(11)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0223387
Souhrn
Bordetella bacteria are respiratory pathogens of humans, birds, and livestock. Bordetella pertussis the causative agent of whopping cough remains a significant health issue. The transcriptional regulator, BpsR, represses a number of Bordetella genes relating to virulence, cell adhesion, cell motility, and nicotinic acid metabolism. DNA binding of BpsR is allosterically regulated by interaction with 6-hydroxynicotinic acid (6HNA), the first product in the nicotinic acid degradation pathway. To understand the mechanism of this regulation, we have determined the crystal structures of BpsR and BpsR in complex with 6HNA. The structures reveal that BpsR binding of 6HNA induces a conformational change in the protein to prevent DNA binding. We have also identified homologs of BpsR in other Gram negative bacteria in which the amino acids involved in recognition of 6HNA are conserved, suggesting a similar mechanism for regulating nicotinic acid degradation.
Klíčová slova:
Crystal structure – Dimers – DNA structure – DNA-binding proteins – Monomers – Protein structure – Bordetella – Bordetella pertussis
Zdroje
1. Sukumar N, Nicholson TL, Conover MS, Ganguly T, Deora R. Comparative Analyses of a Cystic Fibrosis Isolate of Bordetella bronchiseptica Reveal Differences in Important Pathogenic Phenotypes. Bäumler AJ, editor. Infect Immun. 2014;82: 1627–1637. doi: 10.1128/IAI.01453-13 24470470
2. Sukumar N, Love CF, Conover MS, Kock ND, Dubey P, Deora R. Active and passive immunizations with bordetella colonization factor a protect mice against respiratory challenge with bordetella bronchiseptica. Infect Immun. 2009;77: 885–895. doi: 10.1128/IAI.01076-08 19064638
3. de Greeff SC, de Melker HE, van Gageldonk PGM, Schellekens JFP, van der Klis FRM, Mollema L, et al. Seroprevalence of pertussis in The Netherlands: evidence for increased circulation of Bordetella pertussis. Ratner AJ, editor. PLoS One. 2010;5: e14183. doi: 10.1371/journal.pone.0014183 21152071
4. Dorji D, Mooi F, Yantorno O, Deora R, Graham RM, Mukkur TK. Bordetella Pertussis virulence factors in the continuing evolution of whooping cough vaccines for improved performance. Med Microbiol Immunol. 2018;207: 3–26. doi: 10.1007/s00430-017-0524-z 29164393
5. Paddock CD, Sanden GN, Cherry JD, Gal AA, Langston C, Tatti KM, et al. Pathology and Pathogenesis of Fatal Bordetella pertussis Infection in Infants. Clin Infect Dis. 2008;47: 328–338. doi: 10.1086/589753 18558873
6. SOANE M., JACKSON A, MASKELL D, ALLEN A, KEIG P, DEWAR A, et al. Interaction of Bordetella pertussis with human respiratory mucosa in vitro. Respir Med. 2000;94: 791–799. doi: 10.1053/rmed.2000.0823 10955756
7. Sloan GP, Love CF, Sukumar N, Mishra M, Deora R. The Bordetella Bps polysaccharide is critical for biofilm development in the mouse respiratory tract. J Bacteriol. 2007;189: 8270–6. doi: 10.1128/JB.00785-07 17586629
8. Dugal F, Girard C, Jacques M. Adherence of Bordetella bronchiseptica 276 to porcine trachea maintained in organ culture. Appl Environ Microbiol. 1990;56: 1523–9. Available: http://www.ncbi.nlm.nih.gov/pubmed/2383001 2383001
9. Conover MS, Mishra M, Deora R. Extracellular DNA is essential for maintaining Bordetella biofilm integrity on abiotic surfaces and in the upper respiratory tract of mice. Neyrolles O, editor. PLoS One. 2011;6: e16861. doi: 10.1371/journal.pone.0016861 21347299
10. Conover MS, Sloan GP, Love CF, Sukumar N, Deora R. The Bps polysaccharide of Bordetella pertussis promotes colonization and biofilm formation in the nose by functioning as an adhesin. Mol Microbiol. 2010;77: 1439–1455. doi: 10.1111/j.1365-2958.2010.07297.x 20633227
11. Nicholson TL, Brockmeier SL, Sukumar N, Paharik AE, Lister JL, Horswill AR, et al. The Bordetella Bps Polysaccharide Is Required for Biofilm Formation and Enhances Survival in the Lower Respiratory Tract of Swine. Bäumler AJ, editor. Infect Immun. 2017;85: e00261–17. doi: 10.1128/IAI.00261-17 28559403
12. Cattelan N, Dubey P, Arnal L, Yantorno OM, Deora R. Bordetella biofilms: A lifestyle leading to persistent infections. Carbonetti N, editor. Pathog Dis. 2018;74: ftv108. doi: 10.1093/femspd/ftv108 26586694
13. Cattelan N, Jennings-Gee J, Dubey P, Yantorno OM, Deora R. Hyperbiofilm Formation by Bordetella pertussis Strains Correlates with Enhanced Virulence Traits. Bäumler AJ, editor. Infect Immun. 2017;85. doi: 10.1128/IAI.00373-17 28893915
14. Ganguly T, Johnson JB, Kock ND, Parks GD, Deora R. The Bordetella pertussis Bps polysaccharide enhances lung colonization by conferring protection from complement-mediated killing. Cell Microbiol. 2014;16: 1105–18. doi: 10.1111/cmi.12264 24438122
15. Conover MS, Redfern CJ, Ganguly T, Sukumar N, Sloan G, Mishra M, et al. BpsR modulates Bordetella biofilm formation by negatively regulating the expression of the Bps polysaccharide. J Bacteriol. 2012;194: 233–242. doi: 10.1128/JB.06020-11 22056934
16. Guragain M, Jennings-Gee J, Cattelan N, Finger M, Conover MS, Hollis T, et al. The Transcriptional Regulator BpsR Controls the Growth of Bordetella bronchiseptica by Repressing Genes Involved in Nicotinic Acid Degradation. J Bacteriol. 2018;200: e00712–17. doi: 10.1128/JB.00712-17 29581411
17. Brickman TJ, Armstrong SK. The Bordetella bronchiseptica nic locus encodes a nicotinic acid degradation pathway and the 6-hydroxynicotinate-responsive regulator BpsR. Mol Microbiol. 2018;108: 397–409. doi: 10.1111/mmi.13943 29485696
18. Jiménez JI, Juárez JF, García JL, Díaz E. A finely tuned regulatory circuit of the nicotinic acid degradation pathway in Pseudomonas putida. Environ Microbiol. 2011;13: 1718–1732. doi: 10.1111/j.1462-2920.2011.02471.x 21450002
19. Jiménez JI, Canales A, Jiménez-Barbero J, Ginalski K, Rychlewski L, García JL, et al. Deciphering the genetic determinants for aerobic nicotinic acid degradation: the nic cluster from Pseudomonas putida KT2440. Proc Natl Acad Sci U S A. 2008;105: 11329–34. doi: 10.1073/pnas.0802273105 18678916
20. Deochand DK, Grove A. MarR family transcription factors: dynamic variations on a common scaffold. Crit Rev Biochem Mol Biol. 2017;52: 595–613. doi: 10.1080/10409238.2017.1344612 28670937
21. Gong Z, Li H, Cai Y, Stojkoska A, Xie J. Biology of MarR family transcription factors and implications for targets of antibiotics against tuberculosis. J Cell Physiol. 2019; jcp.28720. doi: 10.1002/jcp.28720 31012115
22. Ellison DW, Miller VL. Regulation of virulence by members of the MarR/SlyA family. Curr Opin Microbiol. 2006;9: 153–159. doi: 10.1016/j.mib.2006.02.003 16529980
23. Wilkinson SP, Grove A. Ligand-responsive Transcriptional Regulation by Members of the MarR Family of Winged Helix Proteins [Internet]. Available: www.cimb.org
24. Pryor EE, Wozniak DJ, Hollis T. Crystallization of Pseudomonas aeruginosa AmrZ protein: development of a comprehensive method for obtaining and optimization of protein–DNA crystals. Acta Crystallogr Sect F Struct Biol Cryst Commun. 2012;68: 985–993. doi: 10.1107/S1744309112025316 22869139
25. Minor W, Cymborowski M, Otwinowski Z, Chruszcz M. HKL-3000: The integration of data reduction and structure solution—From diffraction images to an initial model in minutes. Acta Crystallogr Sect D Biol Crystallogr. 2006;62: 859–866. doi: 10.1107/S0907444906019949 16855301
26. McCoy AJ, Grosse-Kunstleve RW, Adams PD, Winn MD, Storoni LC, Read RJ. Phaser crystallographic software. J Appl Crystallogr. 2007;40: 658–674. doi: 10.1107/S0021889807021206 19461840
27. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215: 403–410. doi: 10.1016/S0022-2836(05)80360-2 2231712
28. Emsley P, Lohkamp B, Scott WG, Cowtan K. Features and development of Coot. Acta Crystallogr Sect D Biol Crystallogr. 2010;66: 486–501. doi: 10.1107/s0907444910007493 20383002
29. Adams PD, Afonine P V., Bunkóczi G, Chen VB, Echols N, Headd JJ, et al. The Phenix software for automated determination of macromolecular structures. Methods. 2011. pp. 94–106. doi: 10.1016/j.ymeth.2011.07.005 21821126
30. Joosten RP, Long F, Murshudov GN, Perrakis A. The PDB_REDO server for macromolecular structure model optimization. IUCrJ. 2014;1: 213–220. doi: 10.1107/S2052252514009324 25075342
31. Schrödinger L. The PyMOL molecular graphics system, version 1.8. https://www.pymol.org/citing. 2015;
32. Krissinel E, Henrick K. Inference of Macromolecular Assemblies from Crystalline State. J Mol Biol. 2007;372: 774–797. doi: 10.1016/j.jmb.2007.05.022 17681537
33. Alekshun MN, Levy SB, Mealy TR, Seaton BA, Head JF. The crystal structure of MarR, a regulator of multiple antibiotic resistance, at 2.3 Å resolution. Nat Struct Biol. 2001;8: 710–714. doi: 10.1038/90429 11473263
34. Heller M, Wilke M, Haynes C, Strynadka N, McIntosh L, Poole K, et al. The crystal structure of MexR from Pseudomonas aeruginosa in complex with its antirepressor ArmR. Proc Natl Acad Sci U S A. 2008;105: 14832–14837. doi: 10.1073/pnas.0805489105 18812515
35. Dolan KT, Duguid EM, He C. Crystal Structures of SlyA Protein, a Master Virulence Regulator of Salmonella, in Free and DNA-bound States. J Biol Chem. 2011;286: 22178–22185. doi: 10.1074/jbc.M111.245258 21550983
36. Saridakis V, Shahinas D, Xu X, Christendat D. Structural Insight on the Mechanism of Regulation of the MarR Family of Proteins: High-Resolution Crystal Structure of a Transcriptional Repressor from Methanobacterium thermoautotrophicum. J Mol Biol. 2008;377: 655–667. doi: 10.1016/j.jmb.2008.01.001 18272181
37. Lim D, Poole K, Strynadka NCJ. Crystal structure of the MexR repressor of the mexRAB-oprM multidrug efflux operon of Pseudomonas aeruginosa. J Biol Chem. 2002;277: 29253–9. doi: 10.1074/jbc.M111381200 12034710
38. Zhu R, Hao Z, Lou H, Song Y, Zhao J, Chen Y, et al. Structural characterization of the DNA-binding mechanism underlying the copper(II)-sensing MarR transcriptional regulator. J Biol Inorg Chem. 2017;22: 685–693. doi: 10.1007/s00775-017-1442-7 28124121
39. Gao YR, Li DF, Fleming J, Zhou YF, Liu Y, Deng JY, et al. Structural analysis of the regulatory mechanism of MarR protein Rv2887 in M. tuberculosis. Sci Rep. 2017;7. doi: 10.1038/s41598-017-01705-4 28743871
40. Stevenson CEM, Assaad A, Chandra G, Le TBK, Greive SJ, Bibb MJ, et al. Investigation of DNA sequence recognition by a streptomycete MarR family transcriptional regulator through surface plasmon resonance and X-ray crystallography. Nucleic Acids Res. 2013;41: 7009–7022. doi: 10.1093/nar/gkt523 23748564
41. Hong M, Fuangthong M, Helmann JD, Brennan RG. Structure of an OhrR-ohrA operator complex reveals the DNA binding mechanism of the MarR family. Mol Cell. 2005;20: 131–141. doi: 10.1016/j.molcel.2005.09.013 16209951
42. Saito K, Akama H, Yoshihara E, Nakae T. Mutations affecting DNA-binding activity of the MexR repressor of mexR-mexA-mexB-oprM operon expression. J Bacteriol. 2003;185: 6195–6198. doi: 10.1128/JB.185.20.6195-6198.2003 14526032
43. Kanehisa M, Sato Y, Furumichi M, Morishima K, Tanabe M. New approach for understanding genome variations in KEGG. Nucleic Acids Res. 2019;47: D590–D595. doi: 10.1093/nar/gky962 30321428
44. Sievers F, Higgins DG. Clustal Omega for making accurate alignments of many protein sequences. Protein Sci. 2018;27: 135–145. doi: 10.1002/pro.3290 28884485
Článek vyšel v časopise
PLOS One
2019 Číslo 11
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Je libo čepici místo mozkového implantátu?
- Pomůže v budoucnu s triáží na pohotovostech umělá inteligence?
- AI může chirurgům poskytnout cenná data i zpětnou vazbu v reálném čase
- Nová metoda odlišení nádorové tkáně může zpřesnit resekci glioblastomů
Nejčtenější v tomto čísle
- A daily diary study on maladaptive daydreaming, mind wandering, and sleep disturbances: Examining within-person and between-persons relations
- A 3’ UTR SNP rs885863, a cis-eQTL for the circadian gene VIPR2 and lincRNA 689, is associated with opioid addiction
- A substitution mutation in a conserved domain of mammalian acetate-dependent acetyl CoA synthetase 2 results in destabilized protein and impaired HIF-2 signaling
- Molecular validation of clinical Pantoea isolates identified by MALDI-TOF
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy