#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Addiction of mesenchymal phenotypes on the FGF/FGFR axis in oral squamous cell carcinoma cells


Autoři: Asami Hotta Osada aff001;  Kaori Endo aff001;  Yujiro Kimura aff001;  Kei Sakamoto aff004;  Ryosuke Nakamura aff003;  Kaname Sakamoto aff001;  Koichiro Ueki aff002;  Kunio Yoshizawa aff002;  Keiji Miyazawa aff001;  Masao Saitoh aff001
Působiště autorů: Department of Biochemistry, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Yamanashi, Japan aff001;  Department of Oral and Maxillofacial Surgery, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Yamanashi, Japan aff002;  Center for Medical Education and Sciences, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Yamanashi, Japan aff003;  Department of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Yushima, Bunkyo-ku, Tokyo, Japan aff004;  Department of Oral Surgery, Kofu Municipal Hospital, Kofu, Yamanashi, Japan aff005
Vyšlo v časopise: PLoS ONE 14(11)
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pone.0217451

Souhrn

The epithelial–mesenchymal transition (EMT) is a crucial morphological event that occurs during epithelial tumor progression. ZEB1/2 are EMT transcription factors that are positively correlated with EMT phenotypes and breast cancer aggressiveness. ZEB1/2 regulate the alternative splicing and hence isoform switching of fibroblast growth factor receptors (FGFRs) by repressing the epithelial splicing regulatory proteins, ESRP1 and ESRP2. Here, we show that the mesenchymal-like phenotypes of oral squamous cell carcinoma (OSCC) cells are dependent on autocrine FGF–FGFR signaling. Mesenchymal-like OSCC cells express low levels of ESRP1/2 and high levels of ZEB1/2, resulting in constitutive expression of the IIIc-isoform of FGFR, FGFR(IIIc). By contrast, epithelial-like OSCC cells showed opposite expression profiles for these proteins and constitutive expression of the IIIb-isoform of FGFR2, FGFR2(IIIb). Importantly, ERK1/2 was constitutively phosphorylated through FGFR1(IIIc), which was activated by factors secreted autonomously by mesenchymal-like OSCC cells and involved in sustained high-level expression of ZEB1. Antagonizing FGFR1 with either inhibitors or siRNAs considerably repressed ZEB1 expression and restored epithelial-like traits. Therefore, autocrine FGF–FGFR(IIIc) signaling appears to be responsible for sustaining ZEB1/2 at high levels and the EMT phenotype in OSCC cells.

Klíčová slova:

Breast cancer – Fibroblast growth factor – Phenotypes – Phosphorylation – Polymerase chain reaction – Small interfering RNAs – Squamous cell carcinomas – TGF-beta signaling cascade


Zdroje

1. Argiris A, Karamouzis MV, Raben D, Ferris RL. Head and neck cancer. Lancet. 2008;371(9625):1695–1709. doi: 10.1016/S0140-6736(08)60728-X 18486742.

2. Noguti J, De Moura CF, De Jesus GP, Da Silva VH, Hossaka TA, Oshima CT, et al. Metastasis from oral cancer: an overview. Cancer Genomics Proteomics. 2012;9(5):329–35. 22990112.

3. Nieto MA. Context-specific roles of EMT programmes in cancer cell dissemination. Nat. Cell Biol. 2017;19(5):416–418. doi: 10.1038/ncb3520 28446813.

4. Saitoh M. Involvement of partial EMT in cancer progression. J. Biochem. 2018;164(4):257–64. doi: 10.1093/jb/mvy047 29726955.

5. Shibue T, Weinberg RA. EMT, CSCs, and drug resistance: the mechanistic link and clinical implications. Nat. Rev. Clin. Oncol. 2017;14(10):611–629. doi: 10.1038/nrclinonc.2017.44 28397828; PubMed Central PMCID: PMC5720366.

6. Horiguchi K, Sakamoto K, Koinuma D, Semba K, Inoue A, Inoue S, et al. TGF-β drives epithelial-mesenchymal transition through δEF1-mediated downregulation of ESRP. Oncogene. 2012;31(26):3190–3201. Epub 2011/11/01. doi: 10.1038/onc.2011.493 22037216; PubMed Central PMCID: PMC3391666.

7. Fukagawa A, Ishii H, Miyazawa K, Saitoh M. δEF1 associates with DNMT1 and maintains DNA methylation of the E-cadherin promoter in breast cancer cells. Cancer Med. 2015;4(1):125–135. Epub 2014/10/16. doi: 10.1002/cam4.347 25315069; PubMed Central PMCID: PMC4312126.

8. Warzecha CC, Sato TK, Nabet B, Hogenesch JB, Carstens RP. ESRP1 and ESRP2 are epithelial cell-type-specific regulators of FGFR2 splicing. Mol. Cell. 2009;33(5):591–601. doi: 10.1016/j.molcel.2009.01.025 19285943; PubMed Central PMCID: PMC2702247.

9. Warzecha CC, Jiang P, Amirikian K, Dittmar KA, Lu H, Shen S, et al. An ESRP-regulated splicing programme is abrogated during the epithelial-mesenchymal transition. EMBO J. 2010;29(19):3286–3300. Epub 2010/08/17. doi: 10.1038/emboj.2010.195 20711167; PubMed Central PMCID: PMC2957203.

10. Ishii H, Saitoh M, Sakamoto K, Kondo T, Katoh R, Tanaka S, et al. Epithelial Splicing Regulatory Proteins 1 (ESRP1) and 2 (ESRP2) Suppress Cancer Cell Motility via Different Mechanisms. J. Biol. Chem. 2014;289(40):27386–27399. Epub 2014/08/22. doi: 10.1074/jbc.M114.589432 25143390; PubMed Central PMCID: PMC4183779.

11. Eswarakumar VP, Lax I, Schlessinger J. Cellular signaling by fibroblast growth factor receptors. Cytokine Growth Factor Rev. 2005;16(2):139–149. doi: 10.1016/j.cytogfr.2005.01.001 15863030.

12. Holzmann K, Grunt T, Heinzle C, Sampl S, Steinhoff H, Reichmann N, et al. Alternative Splicing of Fibroblast Growth Factor Receptor IgIII Loops in Cancer. J. Nucleic. Acids. 2012;2012:950508. doi: 10.1155/2012/950508 22203889; PubMed Central PMCID: PMC3238399.

13. Yoshizawa K, Nozaki S, Okamune A, Kitahara H, Ohara T, Kato K, et al. Loss of maspin is a negative prognostic factor for invasion and metastasis in oral squamous cell carcinoma. J. Oral Pathol. Med. 2009;38(6):535–539. doi: 10.1111/j.1600-0714.2009.00762.x 19473451.

14. Momose F, Araida T, Negishi A, Ichijo H, Shioda S, Sasaki S. Variant sublines with different metastatic potentials selected in nude mice from human oral squamous cell carcinomas. J. Oral Pathol. Med. 1989;18(7):391–395. doi: 10.1111/j.1600-0714.1989.tb01570.x 2585303.

15. Ichijo H, Momose F, Miyazono K. Biological effects and binding properties of transforming growth factor-β on human oral squamous cell carcinoma cells. Exp. Cell Res. 1990;187(2):263–269. doi: 10.1016/0014-4827(90)90090-w 2156718.

16. Nakamura R, Ishii H, Endo K, Hotta A, Fujii E, Miyazawa K, et al. Reciprocal expression of Slug and Snail in human oral cancer cells. PloS one. 2018;13(7):e0199442. doi: 10.1371/journal.pone.0199442 29969465; PubMed Central PMCID: PMC6029773.

17. Shirakihara T, Horiguchi T, Miyazawa M, Ehata S, Shibata T, Morita I, et al. TGF-β regulates isoform switching of FGF receptors and epithelial-mesenchymal transition. EMBO J. 2011;30(4):783–795. doi: 10.1038/emboj.2010.351 21224849

18. Pfaffl MW, Tichopad A, Prgomet C, Neuvians TP. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper—Excel-based tool using pair-wise correlations. Biotechnol. Lett. 2004;26(6):509–515. 15127793.

19. Johnson G, Nolan T, Bustin SA. Real-time quantitative PCR, pathogen detection and MIQE. Methods Mol. Biol. 2013;943:1–16. doi: 10.1007/978-1-60327-353-4_1 23104279.

20. Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, et al. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin. Chem. 2009;55(4):611–622. doi: 10.1373/clinchem.2008.112797 19246619.

21. Taylor S, Wakem M, Dijkman G, Alsarraj M, Nguyen M. A practical approach to RT-qPCR-Publishing data that conform to the MIQE guidelines. Methods. 2010;50(4):S1–5. doi: 10.1016/j.ymeth.2010.01.005 20215014.

22. Neve RM, Chin K, Fridlyand J, Yeh J, Baehner FL, Fevr T, et al. A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell. 2006;10(6):515–527. Epub 2006/12/13. S1535-6108(06)00314-X [pii] doi: 10.1016/j.ccr.2006.10.008 17157791; PubMed Central PMCID: PMC2730521.

23. Jibiki I, Hashimoto S, Maruoka S, Gon Y, Matsuzawa A, Nishitoh H, et al. Apoptosis signal-regulating kinase 1-mediated signaling pathway regulates nitric oxide-induced activator protein-1 activation in human bronchial epithelial cells. Am. J. Respir. Crit. Care Med. 2003;167(6):856–861. doi: 10.1164/rccm.2204042 12623859.

24. Sonvilla G, Allerstorfer S, Heinzle C, Stattner S, Karner J, Klimpfinger M, et al. Fibroblast growth factor receptor 3-IIIc mediates colorectal cancer growth and migration. Br. J. Cancer. 2010;102(7):1145–56. doi: 10.1038/sj.bjc.6605596 20234367; PubMed Central PMCID: PMC2853090.

25. Saitoh M. Epithelial-mesenchymal transition is regulated at post-transcriptional levels by transforming growth factor-β signaling during tumor progression. Cancer Sci. 2015;106(5):481–488. Epub 2015/02/11. doi: 10.1111/cas.12630 25664423.

26. Bedossa P, Peltier E, Terris B, Franco D, Poynard T. Transforming growth factor-β1 (TGF-β1) and TGF-β1 receptors in normal, cirrhotic, and neoplastic human livers. Hepatology. 1995;21(3):760–766. 7875675.

27. Bierie B, Moses HL. TGF-β and cancer. Cytokine Growth Factor Rev. 2006;17(1–2):29–40. doi: 10.1016/j.cytogfr.2005.09.006 16289860.

28. Matsuyama S, Iwadate M, Kondo M, Saitoh M, Hanyu A, Shimizu K, et al. SB-431542 and Gleevec inhibit transforming growth factor-β-induced proliferation of human osteosarcoma cells. Cancer Res. 2003;63(22):7791–7798. 14633705.

29. Vlotides G, Chen YH, Eigler T, Ren SG, Melmed S. Fibroblast growth factor-2 autofeedback regulation in pituitary folliculostellate TtT/GF cells. Endocrinology. 2009;150(7):3252–3258. doi: 10.1210/en.2008-1625 19359387; PubMed Central PMCID: PMC2703553.

30. Nakamoto T, Chang CS, Li AK, Chodak GW. Basic fibroblast growth factor in human prostate cancer cells. Cancer Res. 1992;52(3):571–577. 1732045.

31. Suyama K, Shapiro I, Guttman M, Hazan RB. A signaling pathway leading to metastasis is controlled by N-cadherin and the FGF receptor. Cancer Cell. 2002;2(4):301–314. 12398894.

32. Buss N, Lapointe JM, de Haan L, Price S, Ahnmark A, Irving L, et al. Monoclonal antibody targeting of fibroblast growth factor receptor 1c causes cardiac valvulopathy in rats. Toxicol. Appl. Pharmacol. 2018;355:147–155. doi: 10.1016/j.taap.2018.06.033 30008375.


Článek vyšel v časopise

PLOS One


2019 Číslo 11
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

plice
INSIGHTS from European Respiratory Congress
nový kurz

Současné pohledy na riziko v parodontologii
Autoři: MUDr. Ladislav Korábek, CSc., MBA

Svět praktické medicíny 3/2024 (znalostní test z časopisu)

Kardiologické projevy hypereozinofilií
Autoři: prof. MUDr. Petr Němec, Ph.D.

Střevní příprava před kolonoskopií
Autoři: MUDr. Klára Kmochová, Ph.D.

Všechny kurzy
Kurzy Podcasty Doporučená témata Časopisy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#