Reorganization of spatial configurations in visual working memory: A matter of set size?
Autoři:
J. David Timm aff001; Frank Papenmeier aff001
Působiště autorů:
Department of Psychology, University of Tübingen, Tübingen, Germany
aff001
Vyšlo v časopise:
PLoS ONE 14(11)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0225068
Souhrn
Humans process single objects in relation to other simultaneously maintained objects in visual working memory. This interdependence is called spatial configuration. Humans are able to reorganize global spatial configurations into relevant partial configurations. We conducted three experiments investigating the process underlying reorganization by manipulating memory set size and the presence of configurations at retrieval. Participants performed a location change detection task for a single object probed at retrieval. At the beginning of each trial, participants memorized the locations of all objects (set size: 4, 8, 12, or 16). During maintenance, a valid retro cue highlighted the side containing the object probed at retrieval, thus enabling participants to reorganize the memorized global spatial configuration to the partial cued configuration. At retrieval, the object probed was shown together with either all objects (complete configuration; Experiment 1a), the cued objects only (congruent configuration; all Experiments), the non-cued objects only (incongruent configuration, all Experiments) or alone (no configuration; Experiment 1b). We observed reorganization of spatial configurations as indicated by a superior location change detection performance with a congruent partial configuration than an incongruent partial configuration across all three experiments. We also observed an overall decrease in accuracy with increasing set size. Most importantly, however, we did not find evidence for a reliable impairment of reorganization with increasing set size. We discuss these findings with regard to the memory representation underlying spatial configurations.
Klíčová slova:
Analysis of variance – Eye movements – Memory – Perception – Sensory cues – Vision – Working memory – Signal detection theory
Zdroje
1. Luck SJ, Vogel EK. The capacity of visual working memory for features and conjunctions. Nature. 1997;390(6657):279–281. doi: 10.1038/36846 9384378
2. Wheeler ME, Treisman AM. Binding in short-term visual memory. J Exp Psychol Gen. 2002;131:48–64. doi: 10.1037//0096-3445.131.1.48 11900102
3. Dempere-Marco L, Melcher DP, Deco G. Effective Visual Working Memory Capacity: An Emergent Effect from the Neural Dynamics in an Attractor Network. PLOS ONE. 2012 Aug 29;7(8):e42719. doi: 10.1371/journal.pone.0042719 22952608
4. Engle RW. Working Memory Capacity as Executive Attention. Curr Dir Psychol Sci. 2002 Feb 1;11(1):19–23.
5. Gurariy G, Killebrew KW, Berryhill ME, Caplovitz GP. Induced and Evoked Human Electrophysiological Correlates of Visual Working Memory Set-Size Effects at Encoding. PLOS ONE. 2016 Nov 30;11(11):e0167022. doi: 10.1371/journal.pone.0167022 27902738
6. Matsukura M, Hollingworth A. Does visual short-term memory have a high-capacity stage? Psychon Bull Rev. 2011 Dec;18(6):1098–104. doi: 10.3758/s13423-011-0153-2 21935737
7. Matsuyoshi D, Ikeda T, Sawamoto N, Kakigi R, Fukuyama H, Osaka N. Differential Roles for Parietal and Occipital Cortices in Visual Working Memory. PLOS ONE. 2012 Jun 5;7(6):e38623. doi: 10.1371/journal.pone.0038623 22679514
8. Öğmen H, Ekiz O, Huynh D, Bedell HE, Tripathy SP. Bottlenecks of Motion Processing during a Visual Glance: The Leaky Flask Model. PLOS ONE. 2013 Dec 31;8(12):e83671. doi: 10.1371/journal.pone.0083671 24391806
9. Rolls ET, Dempere-Marco L, Deco G. Holding Multiple Items in Short Term Memory: A Neural Mechanism. PLOS ONE. 2013 Apr 16;8(4):e61078. doi: 10.1371/journal.pone.0061078 23613789
10. Turner ML, Engle RW. Is working memory capacity task dependent? J Mem Lang. 1989 Apr 1;28(2):127–54.
11. Vogel EK, Machizawa MG. Neural activity predicts individual differences in visual working memory capacity. Nature. 2004 Apr;428(6984):748–51. doi: 10.1038/nature02447 15085132
12. Jiang Y, Olson IR, Chun MM. Organization of visual short-term memory. J Exp Psychol Learn Mem Cogn. 2000;26(3):683–702. doi: 10.1037//0278-7393.26.3.683 10855426
13. Timm JD, Papenmeier F. Reorganization of spatial configurations in visual working memory. Mem Cognit. 2019;47(8):1469–80. doi: 10.3758/s13421-019-00944-2 31215006
14. Brady TF, Alvarez GA. Hierarchical Encoding in Visual Working Memory: Ensemble Statistics Bias Memory for Individual Items. Psychol Sci. 2011 Mar;22(3):384–92. doi: 10.1177/0956797610397956 21296808
15. Brady TF, Alvarez GA. Contextual effects in visual working memory reveal hierarchically structured memory representations. J Vis. 2015 Nov 17;15(15):6. doi: 10.1167/15.15.6 26575192
16. Feigenson L. Parallel non-verbal enumeration is constrained by a set-based limit. Cognition. 2008 Apr 1;107(1):1–18. doi: 10.1016/j.cognition.2007.07.006 17761158
17. Halberda J, Sires SF, Feigenson L. Multiple Spatially Overlapping Sets Can Be Enumerated in Parallel. Psychol Sci. 2006 Jul 1;17(7):572–6. doi: 10.1111/j.1467-9280.2006.01746.x 16866741
18. Wood JN. A core knowledge architecture of visual working memory. J Exp Psychol Hum Percept Perform. 2011;37(2):357–81. doi: 10.1037/a0021935 21463083
19. Brady TF, Konkle T, Alvarez GA. A review of visual memory capacity: Beyond individual items and toward structured representations. J Vis. 2011 May 26;11(5):4–4. doi: 10.1167/11.5.4 21617025
20. Greene MR, Oliva A. Recognition of natural scenes from global properties: Seeing the forest without representing the trees. Cognit Psychol. 2009 Mar 1;58(2):137–76. doi: 10.1016/j.cogpsych.2008.06.001 18762289
21. Zhang W, Luck SJ. Discrete fixed-resolution representations in visual working memory. Nature. 2008 May 8;453(7192):233–5. doi: 10.1038/nature06860 18385672
22. Treisman A, Zhang W. Location and binding in visual working memory. Mem Cognit. 2006 Dec 1;34(8):1704–19. doi: 10.3758/bf03195932 17489296
23. Bae G-Y, Luck SJ. Interactions between visual working memory representations. Atten Percept Psychophys. 2017 Nov;79(8):2376–95. doi: 10.3758/s13414-017-1404-8 28836145
24. Orhan AE, Jacobs RA. A probabilistic clustering theory of the organization of visual short-term memory. Psychol Rev. 2013;120(2):297–328. doi: 10.1037/a0031541 23356778
25. Jiang Y, Chun MM, Olson IR. Perceptual grouping in change detection. Atten Percept Psychophys. 2004;66(3):446–453.
26. Papenmeier F, Huff M. Viewpoint-dependent representation of contextual information in visual working memory. Atten Percept Psychophys. 2014 Apr;76(3):663–8. doi: 10.3758/s13414-014-0632-4 24470259
27. Papenmeier F, Huff M, Schwan S. Representation of dynamic spatial configurations in visual short-term memory. Atten Percept Psychophys. 2012 Feb;74(2):397–415. doi: 10.3758/s13414-011-0242-3 22090188
28. Papenmeier F. powerbydesign: Power Estimates for ANOVA Designs. [Internet]. 2016. Available from: https://CRAN.R-project.org/package=powerbydesign
29. Peirce JW. PsychoPy—Psychophysics software in Python. J Neurosci Methods. 2007 May;162(1–2):8–13. doi: 10.1016/j.jneumeth.2006.11.017 17254636
30. Peirce JW, Gray JR, Simpson S, MacAskill M, Höchenberger R, Sogo H, et al. PsychoPy2: Experiments in behavior made easy. Behav Res Methods. 2019 Feb 1;51(1):195–203. doi: 10.3758/s13428-018-01193-y 30734206
31. Stanislaw H, Todorov N. Calculation of signal detection theory measures. Behav Res Methods Instrum Comput. 1999;31(1):137–49. doi: 10.3758/bf03207704 10495845
32. Higuchi Y, Saiki J. Implicit learning of spatial configuration occurs without eye movement. Jpn Psychol Res. 2017 Apr;59(2):122–32.
33. Sligte IG, Scholte HS, Lamme VAF. Are There Multiple Visual Short-Term Memory Stores? He S, editor. PLOS ONE. 2008 Feb 27;3(2):e1699. doi: 10.1371/journal.pone.0001699 18301775
34. Udale R, Farrell S, Kent C. No evidence of binding items to spatial configuration representations in visual working memory. Mem Cognit. 2018 Aug;46(6):955–68. doi: 10.3758/s13421-018-0814-8 29777438
Článek vyšel v časopise
PLOS One
2019 Číslo 11
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Proč při poslechu některé muziky prostě musíme tančit?
- Je libo čepici místo mozkového implantátu?
- Chůze do schodů pomáhá prodloužit život a vyhnout se srdečním chorobám
- Pomůže v budoucnu s triáží na pohotovostech umělá inteligence?
Nejčtenější v tomto čísle
- A daily diary study on maladaptive daydreaming, mind wandering, and sleep disturbances: Examining within-person and between-persons relations
- A 3’ UTR SNP rs885863, a cis-eQTL for the circadian gene VIPR2 and lincRNA 689, is associated with opioid addiction
- A substitution mutation in a conserved domain of mammalian acetate-dependent acetyl CoA synthetase 2 results in destabilized protein and impaired HIF-2 signaling
- Molecular validation of clinical Pantoea isolates identified by MALDI-TOF
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy